Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New centre launched today to spearhead UK research in synthetic biology

Programming biological cells so that they behave like engineering parts is the focus of research at a new UK centre launched today, thanks to an £8 million grant from the Engineering and Physical Sciences Research Council (EPSRC).

The new centre will focus on synthetic biology. This is a field in which engineers work with molecular bioscientists to produce biologically-based parts, by modifying DNA. These parts could be used to build biological devices that could detect the early onset of disease or combat harmful bacterial infections.

Imperial College London in partnership with the London School of Economics and Political Science (LSE) will establish the Centre for Synthetic Biology and Innovation as part of EPSRC’s effort to push the UK to the forefront of this field. Imperial’s Professor Richard Kitney, Director of the Centre, says this new research facility will bring a wealth of new expertise to the UK. He adds:

“Imperial will recruit the best scientists from the UK and around the world to carry out collaborative research, generate intellectual property for licensing, and ultimately create spinout companies that will play a part in spawning new industries for the UK.”

Imperial’s Professor Paul Freemont, who is Co-Director of the Centre, says that in the next 20 to 50 years research in this field will get to the point where synthetic biology techniques will have the precision of electronics. Currently, biology is much more complicated and less understood. He explains:

“Our understanding of how living cells work isn’t as good as our understanding of electronic devices. We want to get to the stage where we’ve got all the parts we need to build any biological machine that we want.”

Initially, researchers at the Centre will focus on developing standard systems and specifications to create these parts. This will involve modifying DNA, inserting it into cells, and cataloguing what these cells do. These will then be used to assemble devices for use in a range of applications.

One long-term application could include the development of biological micro-processors. These are microscopic biologically based electronic devices that could, for example, be inserted into the body to monitor the health of patients, or detect types of cancer.

Already, researchers at Imperial have developed some important components for use in a biological micro-processor, such as an oscillator, which is a device that keeps time. Scientists are also working on logic circuits for use in microprocessors, called ‘AND’ gates, made from bacteria.

Another application is the development of sensors to detect harmful bacteria. These sensors are designed to recognise a small molecule that is released when harmful bacteria begin to colonise surfaces.

Scientists say this device could have applications in the food and healthcare industry where samples from wiped surfaces could be placed on the infection detector’s chip. This would emit different coloured lights to alert the user to the type of bacteria that has infected the surface such as E.coli or MRSA, enabling staff to take remedial action rapidly.

The College will work closely with LSE to inform the public about the research that will be carried out at the Centre. This will involve lectures and outreach activities about the potential benefits of synthetic biology and its public value.

LSE will also train researchers at the Centre in the social, ethical, legal, and political issues surrounding this emerging field. These include examining the social and economic impacts of biotechnology, and developing practices of regulation and good governance

Professor Nikolas Rose, Director of LSE’s BIOS Centre, points out that consideration of the social issues has been built in to the very conception of this new centre. He says:

“We have developed a highly innovative link between life scientists and social scientists in teaching and research. Crucially, we believe that informed public debate, with active engagement by the research scientists, is essential if the many benefits of synthetic biology are to be fully realised”

The Centre for Synthetic Biology and Innovation is part of Imperial’s Institute for Systems and Synthetic Biology - a multidisciplinary, multi faculty institute focused on developing novel approaches to research in biology, medicine and engineering. The new centre will be based in the Faculty of Engineering and will work closely with the Department of Bioengineering and life sciences.

The Centre received a grant from the EPSRC as part of their Science and Innovation Award 2008. This will be used to establish a physical space, laboratory refurbishments as well as recruiting academic staff and postdoctoral research fellows.

Colin Smith | alfa
Further information:

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>