Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broad Institute Awarded Major Grant to Bolster Epigenomics Research

02.10.2008
Researchers at the Broad Institute of Harvard and MIT announced today that they have received a grant from the National Institutes of Health (NIH) to map the epigenomes of a variety of medically important cell types, including human embryonic stem cells.

The five-year, ~$15M grant, part of the NIH Roadmap for Medical Research, designates the institute as one of four Reference Epigenome Mapping Centers nationwide that will aim to transform the understanding of an exquisite control system — a code of so-called “epigenetic” cues that specify when and where in the body genes are made active.

To systematically decipher and analyze these controls, researchers from across the Harvard and MIT communities will come together to study at least 100 distinct types of human cells using the latest methods in stem cell biology, genomics, technology, computation, and production-scale research.

“The human epigenome is arguably the next frontier of genomic research,” said co-principal investigator Alex Meissner, who is an associate member at the Broad Institute and an assistant professor in the Department of Stem Cell and Regenerative Biology at Harvard University. “Bolstered by recent technological advances, this award will enable us to create comprehensive epigenomic maps of a variety of human cells and to share that data with the worldwide scientific community.”

“Epigenomics lies at a key intersection point between genome biology and human disease,” said Bradley Bernstein, a co-principal investigator as well as a Broad Institute associate member and an assistant professor at Harvard Medical School and Massachusetts General Hospital. “By glimpsing the normal epigenome at unprecedented breadth and depth, we will lay the critical groundwork for future insights into the epigenetic basis of a variety of diseases, including cancers.”

An overarching question in human biology is how cells in the body, with the exact same DNA, adopt such distinct forms and functions. The answer lies mainly in the epigenome, a special code of chemical tags affixed to DNA or to its supporting proteins (known as “histones”) that act as gatekeepers to the genome — enabling genes to be switched on or ensuring they remain switched off. In the past few years, two techniques have transformed researchers’ abilities to probe cells’ epigenomes: ChIP-Seq and high-throughput bisulfite sequencing (HTBS). These technologies can help pinpoint the genomic locations of various types of chemical tags, such as methyl groups, and thus chart the epigenome.

The Reference Epigenome Mapping Center (REMC) at the Broad Institute will help create comprehensive, genome-scale maps of the epigenomes of a variety of cells, including human embryonic stem cells, various adult stem cells, and other key cell types. The researchers will survey both the DNA backbone and its accompanying histone proteins for chemical modifications using HTBS and ChIP-Seq respectively, which take advantage of the increased throughput and decreased cost of next-generation DNA sequencing, and provide unprecedented precision and genomic coverage.

Just as the Human Genome Project provided researchers with a draft genome sequence, the REMCs will help create draft epigenomic maps of a diverse set of cell types. Those data will serve as a vast resource for the scientific community to enhance the understanding of epigenetic mechanisms of disease, pinpoint novel molecular targets for therapy, complement ongoing investigations of the genetic susceptibilities of a wide range of diseases, and bolster current research in stem cell biology and regenerative medicine.

The NIH award to the Broad Institute represents one of four areas of epigenomic research to receive funding under the NIH Roadmap Epigenomics Program. In addition to the work of the epigenome mapping centers, other funded centers will focus on epigenomics data analysis and coordination, technology development in epigenetics, and the discovery of novel chemical tags that mark the epigenomes of mammalian cells. Funds totaling roughly $18 million will be awarded for these activities in 2008.

About the Broad Institute of Harvard and MIT

The Broad Institute of Harvard and MIT was founded in 2003 to bring the power of genome-based knowledge to medicine. It pursues this mission by empowering creative scientists to construct new and robust tools for genomic medicine, to apply them to the understanding and treatment of disease, and to make them freely accessible to the global scientific community.

The Institute’s scientific community is comprised of faculty, professional staff, and students from throughout the MIT and Harvard, and is jointly governed by the two universities.

Organized around scientific programs and platforms, the unique structure of the Broad Institute enables scientists to collaborate on transformative projects across many scientific and medical disciplines.

Nicole Davis | Newswise Science News
Further information:
http://www.broad.mit.edu

Further reports about: Broad Institute ChIP-Seq DNA Epigenomics HTBS Harvard NIH REMC cell biology cell types epigenome human cells stem cells

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>