Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


With board games, it's how children count that counts

Boston College and Carnegie Mellon researchers find 'count-on' method yields learning gains

Teachers and parents like to use board games to teach skills that range from fair play to counting. When it comes to improving early number skills, a new report by Boston College and Carnegie Mellon University researchers finds that how children count is what really counts.

Games like Chutes & Ladders require players to count out the spaces along which they move their tokens at each turn. Earlier studies have pointed to the benefits to young children of playing games that require counting.

The new study suggests the simple act of playing a number game may not yield the benefits earlier studies have detailed. What matters is how children count while they play, Boston College Assistant Professor of Education Elida Laski and Carnegie Mellon Professor of Psychology Robert S. Siegler report in the journal Developmental Psychology.

... more about:
»Psychology »board games »number skills

"We found that it's the way that children count – whether the counting procedure forces them to attend to the numbers in the spaces of a board game – that yields real benefits in the use of numbers," said Laski, a developmental psychologist. "What's most important is whether you count within a larger series of numbers, or simply start from one each time you move a piece."

The researchers tested two counting methods in a study of 40 children who played a 100-space board game designed by the researchers to mimic products like Chutes & Ladders. In the first method, referred to as "count-from-1", children started counting from the number one each time they moved a piece. In the other method, students would "count on" from the actual numerical place of their latest landing spot in the game. So a child who had moved her piece 15 spaces would "count-on" from 16 during her next move.

The process of counting on allows children to develop their ability to encode the relationship between numbers and spaces, Laski and her colleagues report in the journal article "Learning From Number Board Games: You Learn What You Encode." That, in turn, improved their abilities to estimate the size of numbers on number lines, identify numbers and to count-on.

Playing the same game, the standard "count-from-1" method led to considerably less learning, the researchers found. In a second experiment, the researchers found that students who practiced encoding numbers 1 through 100 via methods beyond a board game showed no appreciable gain in number line estimation.

The new results suggest that simply playing board games may not yield improvements in counting skills. Instead, parents and teachers need to direct children's attention to the numbers on the game boards to realize those benefits.

"Board games help children understand the magnitude of numbers by improving their abilities to estimate, to count and to identify numbers," said Laski. "But the benefits depend on how children count during the game. By counting-on, parents and their children can see some real benefits from board games. It's a simple way to enhance any game they have at home and still have fun playing it."

Ed Hayward | EurekAlert!
Further information:

Further reports about: Psychology board games number skills

More articles from Science Education:

nachricht Studying outdoors is better
06.02.2018 | Technische Universität München

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>