Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With board games, it's how children count that counts

18.11.2013
Boston College and Carnegie Mellon researchers find 'count-on' method yields learning gains

Teachers and parents like to use board games to teach skills that range from fair play to counting. When it comes to improving early number skills, a new report by Boston College and Carnegie Mellon University researchers finds that how children count is what really counts.

Games like Chutes & Ladders require players to count out the spaces along which they move their tokens at each turn. Earlier studies have pointed to the benefits to young children of playing games that require counting.

The new study suggests the simple act of playing a number game may not yield the benefits earlier studies have detailed. What matters is how children count while they play, Boston College Assistant Professor of Education Elida Laski and Carnegie Mellon Professor of Psychology Robert S. Siegler report in the journal Developmental Psychology.

... more about:
»Psychology »board games »number skills

"We found that it's the way that children count – whether the counting procedure forces them to attend to the numbers in the spaces of a board game – that yields real benefits in the use of numbers," said Laski, a developmental psychologist. "What's most important is whether you count within a larger series of numbers, or simply start from one each time you move a piece."

The researchers tested two counting methods in a study of 40 children who played a 100-space board game designed by the researchers to mimic products like Chutes & Ladders. In the first method, referred to as "count-from-1", children started counting from the number one each time they moved a piece. In the other method, students would "count on" from the actual numerical place of their latest landing spot in the game. So a child who had moved her piece 15 spaces would "count-on" from 16 during her next move.

The process of counting on allows children to develop their ability to encode the relationship between numbers and spaces, Laski and her colleagues report in the journal article "Learning From Number Board Games: You Learn What You Encode." That, in turn, improved their abilities to estimate the size of numbers on number lines, identify numbers and to count-on.

Playing the same game, the standard "count-from-1" method led to considerably less learning, the researchers found. In a second experiment, the researchers found that students who practiced encoding numbers 1 through 100 via methods beyond a board game showed no appreciable gain in number line estimation.

The new results suggest that simply playing board games may not yield improvements in counting skills. Instead, parents and teachers need to direct children's attention to the numbers on the game boards to realize those benefits.

"Board games help children understand the magnitude of numbers by improving their abilities to estimate, to count and to identify numbers," said Laski. "But the benefits depend on how children count during the game. By counting-on, parents and their children can see some real benefits from board games. It's a simple way to enhance any game they have at home and still have fun playing it."

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

Further reports about: Psychology board games number skills

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>