Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Aftermath of Calculator Use in College Classrooms

13.11.2012
Students may rely on calculators to bypass a more holistic understanding of mathematics, says Pitt researcher

Math instructors promoting calculator usage in college classrooms may want to rethink their teaching strategies, says Samuel King, postdoctoral student in the University of Pittsburgh’s Learning Research & Development Center.

King has proposed the need for further research regarding calculators’ role in the classroom after conducting a limited study with undergraduate engineering students published in the British Journal of Educational Technology.

“We really can’t assume that calculators are helping students,” said King. “The goal is to understand the core concepts during the lecture. What we found is that use of calculators isn’t necessarily helping in that regard.”

Together with Carol Robinson, coauthor and director of the Mathematics Education Centre at Loughborough University in England, King examined whether the inherent characteristics of the mathematics questions presented to students facilitated a deep or surface approach to learning. Using a limited sample size, they interviewed 10 second-year undergraduate students enrolled in a competitive engineering program. The students were given a number of mathematical questions related to sine waves—a mathematical function that describes a smooth repetitive oscillation—and were allowed to use calculators to answer them. More than half of the students adopted the option of using the calculators to solve the problem.

“Instead of being able to accurately represent or visualize a sine wave, these students adopted a trial-and-error method by entering values into a calculator to determine which of the four answers provided was correct,” said King. “It was apparent that the students who adopted this approach had limited understanding of the concept, as none of them attempted to sketch the sine wave after they worked out one or two values.”

After completing the problems, the students were interviewed about their process. A student who had used a calculator noted that she struggled with the answer because she couldn’t remember the “rules” regarding sine and it was “easier” to use a calculator. In contrast, a student who did not use a calculator was asked why someone might have a problem answering this question. The student said he didn’t see a reason for a problem. However, he noted that one may have trouble visualizing a sine wave if he/she is told not to use a calculator.

“The limited evidence we collected about the largely procedural use of calculators as a substitute for the mathematical thinking presented indicates that there might be a need to rethink how and when calculators may be used in classes—especially at the undergraduate level,” said King. “Are these tools really helping to prepare students or are the students using the tools as a way to bypass information that is difficult to understand? Our evidence suggests the latter, and we encourage more research be done in this area.”

King also suggests that relevant research should be done investigating the correlation between how and why students use calculators to evaluate the types of learning approaches that students adopt toward problem solving in mathematics.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

Further reports about: Calculator Classrooms Learning Research calculator usage

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>