Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced Learning through Negotiations

16.04.2013
In the modern knowledge society, pupils and students are expected to acquire increasingly advanced knowledge and skills.

A doctoral thesis from the University of Gothenburg, Sweden, shows that negotiations about how to approach problems and tasks, and about how tools such as digital technologies can be used, provide an effective model for how an educational programme can prepare young people for the future.

In his doctoral thesis, Patrik Lilja explores how education and instruction can be organised to prepare students for the challenges of the future, as the conditions for production, communication and uptake of knowledge are changing.

One way is to organise education according to methods based on inquiry, a concept with a long history in the field of education and roots in the work of John Dewey – a renowned philosopher and educational reformer.

‘The basic idea is that learning is organised as a process where students ask questions, conduct studies, create various products, and discuss and reflect,’ says Lilja.

Based on a case study, he explored how the principles of inquiry are integrated in practice and how they affect classroom activities, learning and development. The empirical material comes from a field study of an upper-secondary programme in social science at a Swedish school where the students’ work has been organised in the form of problem-based learning and projects. The students carry out thematic projects spanning over several school subjects. The study covers two classes with a total of about 50 students, of whom about 20 were followed closely for a long time.

Patrik Lilja investigates different aspects of students’ work in four separate analyses. A central finding is that the programme is organised according to an ecology of negotiation.

‘This refers to a learning environment that allows students to interpret and find their own ways to approach tasks, to get involved in and actively discuss various issues. At the same time, they are required to consider the learning targets declared for each theme,’ says Lilja.

The point is not to transfer the learning process to the students but to give negotiations a central role. The negotiations may concern how to approach and plan tasks and how to use various tools, such as digital technologies. The students are expected to solve problems together – a process that requires both cooperation and information retrieval from many different types of sources, which they have to assess in terms of relevance and objectivity.

‘The role of teachers must be understood at multiple levels. They partly contribute to making room for the students’ initiatives and decision making by arranging situations where the students in groups need to negotiate and decide how to approach the tasks at hand. They also teach and join student discussions,’ says Lilja.

The thesis gives many examples of advanced work by both students and teachers. The school environment implies a great potential for students to develop complex competences and approaches of the types that are deemed relevant in the modern information and knowledge society.

For more information:

Patrik Lilja, telephone: +46 (0)709-371986,
e-mail: patrik.lilja@gu.se

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>