Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced Learning through Negotiations

16.04.2013
In the modern knowledge society, pupils and students are expected to acquire increasingly advanced knowledge and skills.

A doctoral thesis from the University of Gothenburg, Sweden, shows that negotiations about how to approach problems and tasks, and about how tools such as digital technologies can be used, provide an effective model for how an educational programme can prepare young people for the future.

In his doctoral thesis, Patrik Lilja explores how education and instruction can be organised to prepare students for the challenges of the future, as the conditions for production, communication and uptake of knowledge are changing.

One way is to organise education according to methods based on inquiry, a concept with a long history in the field of education and roots in the work of John Dewey – a renowned philosopher and educational reformer.

‘The basic idea is that learning is organised as a process where students ask questions, conduct studies, create various products, and discuss and reflect,’ says Lilja.

Based on a case study, he explored how the principles of inquiry are integrated in practice and how they affect classroom activities, learning and development. The empirical material comes from a field study of an upper-secondary programme in social science at a Swedish school where the students’ work has been organised in the form of problem-based learning and projects. The students carry out thematic projects spanning over several school subjects. The study covers two classes with a total of about 50 students, of whom about 20 were followed closely for a long time.

Patrik Lilja investigates different aspects of students’ work in four separate analyses. A central finding is that the programme is organised according to an ecology of negotiation.

‘This refers to a learning environment that allows students to interpret and find their own ways to approach tasks, to get involved in and actively discuss various issues. At the same time, they are required to consider the learning targets declared for each theme,’ says Lilja.

The point is not to transfer the learning process to the students but to give negotiations a central role. The negotiations may concern how to approach and plan tasks and how to use various tools, such as digital technologies. The students are expected to solve problems together – a process that requires both cooperation and information retrieval from many different types of sources, which they have to assess in terms of relevance and objectivity.

‘The role of teachers must be understood at multiple levels. They partly contribute to making room for the students’ initiatives and decision making by arranging situations where the students in groups need to negotiate and decide how to approach the tasks at hand. They also teach and join student discussions,’ says Lilja.

The thesis gives many examples of advanced work by both students and teachers. The school environment implies a great potential for students to develop complex competences and approaches of the types that are deemed relevant in the modern information and knowledge society.

For more information:

Patrik Lilja, telephone: +46 (0)709-371986,
e-mail: patrik.lilja@gu.se

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>