Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accredited Analysis Laboratory for Micro and Nanotechnology at Fraunhofer IISB

03.02.2010
The Analysis Laboratory for Micro- and Nanotechnology at the Fraunhofer Institute for Integrated Systems and Device Technology IISB in Erlangen was accredited by the 'Deutsche Gesellschaft für Akkreditierung' following DIN EN ISO/IEC 17025:2005.

The testing laboratory in Erlangen carries out tests in the fields of physical, physico-chemical, and chemical analysis of substrates, media, and materials for micro and nanotechnology. The accreditation of the testing laboratory demonstrates the expertise and cutting edge of Fraunhofer IISB in the area of trace and material analysis for micro and nanoelectronics.

IISB characterizes semiconductor processes and investigates samples of semiconductor wafers, ultra clean chemicals, consumables, and construction materials. They are used in key industries, as, for example, the chip industry, micro systems technology or photovoltaics. Furthermore, manufacturers and suppliers for high-tech manufacturing equipment and metrology-based monitoring systems are supported. A further area of expertise is the control of environmental conditions and contaminations in ultra clean rooms and so-called minienvironments. This is also especially beneficial for small and medium enterprises, which neither can afford nor want to operate an own laboratory infrastructure.

The accreditation is an internationally accepted proof of competence concerning the methodology of testing, instrumentation, and infrastructure. In addition, the impartiality is guaranteed. Beside the calibration of metrology and the validation of analytical techniques, the accreditation is a certificate of confidentiality regarding the handling of test results. Also the reliability of the document management is certified.

Accreditation according to ISO 17025 is a step beyond certification according to ISO 9001. It is an additional proof of technical competence. The accreditation guarantees the traceability of analysis results to SI units as well as a well-known measurement uncertainty, assuring the comparability of analysis results between different laboratories. The operation of a testing laboratory according to the guidelines of ISO 17025 also guarantees the continuous development and improvement of analytical methods.

Accreditation is essential in quality-driven industries, as, for example, automotive industries, microelectronics, and pharmaceutical industries. Also in the new field of nanotechnologies, the availability of accredited laboratories is of increasing importance. Due to its long-standing expertise in the areas of analytical techniques, metrology, and calibration, Fraunhofer IISB is the ideal partner in R&D for universities, research institutes, and industry at an international level.

Parts of the related work were funded by the European Commission under contract RII3 026134.

Contact:
Prof. Lothar Pfitzner (Laboratory Manager),
Dr. Andreas Nutsch (Deputy Laboratory Manager),
Dr. Michael Otto (Quality Manager)
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-115
Fax +49-9131-761-112
andreas.nutsch@iisb.fraunhofer.de

Dr. Bernd Fischer | Fraunhofer-Gesellschaft
Further information:
http://www.iisb.fraunhofer.de

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>