Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D Printer Proving Ground: Models Meet Their Match in Elementary Classrooms

25.05.2010
Do you want a chocolate candy bar? Then, print one.

Kids in the classroom are learning how technology works by fabricating 3-D copies of their favorite things.

Cornell University’s Computational Synthesis Lab – headed by Hod Lipson, Cornell associate professor of engineering – has been awarded a share of a MacArthur "Reimagining Learning" Competition grant to bring the three-dimensional printers to public elementary school classrooms.

The goal: Get young children to feel comfortable with engineering.

Lipson’s lab makes three-dimensional printers compatible with an endless array of materials – from Play-Doh, cookie dough and chocolate to polymers and metals – which allows a kid to make 3D objects right on their desktop. These printers read an electronic blueprint and then a nozzle, filled with appropriate materials, builds a replica.

Using a 3-D printer, the students at the Cayuga Heights Elementary School in Ithaca, N.Y., made a small space shuttle from two colors of Play-Doh. Lipson says: “Ultimately what we really want is to have a personal fabricator in every classroom, just like there is a personal computer in every classroom.”

The grant – one of a handful selected from among hundreds of applicants worldwide – was awarded to Glen Bull, University of Virginia professor of instructional technology, who will spearhead the Fab@School effort to create curriculum and data collection around digital fabricators for classrooms in Virginia. Lipson is part of that effort.

The MacArthur grant was $185,000. The Digital Media and Learning Competition is funded by a grant from the MacArthur Foundation to the University of California Humanities Research Institute and Duke University and is administered by the Humanities, Arts, Science and Technology Advanced Collaboratory (HASTAC), a virtual network of learning institutions.

The grant will allow the Fab@Home project team, headed by Jeffrey Lipton, Cornell doctoral student, to design and build five more printers appropriate for use in elementary school classrooms.

Anyone can download the open-source plans to build the printers. The latest version can be built with about $1,600 worth of off-the-shelf parts.

The Fab@School Web site: http://www.dmlcompetition.net/pligg/story.php?title=630

The Fab@Home Web site:
http://fabathome.org

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>