Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wood Industry to see new Laser research that transforms MDF with Image of Rare Wood Grains

Wood and Furniture industry specialists are to gather at the University of Warwick on Wednesday 17th September to see new technology developed by researchers at the University of Warwick that uses a laser to transform MDF giving it a surface finish that looks like some of the most expensive wood grains.

The “LaserCoat” research project in a collaborative research effort consisting of eight academic, research and commercial organisations and part-financed by the Technology Strategy Board.

University of Warwick WMG researcher Dr Ken Young said:

“MDF is a superb and highly versatile material. It’s easy to work with and cheap. It is usually made from waste material so it is much kinder to the environment than using more real wood. But normally it looks rather dull in its raw state. Until now there has been no way to liven it up other than painting it.”

“Using lasers to produce a wood grain in MDF could help bring a more natural quality into homes and businesses without the financial and environmental cost of having to use new wood.”

The technology also has great potential for commercial use as it is very hardwearing and can be used for flooring or other applications where cost is an issue but where looks are important too. It can mimic a vast range of real wood grains, it can produce logos, decoration, or even coloured and shaped decorative surfaces using a powder coating version of this new laser technology.

Mick Toner, Factory Manager of Howarth Windows & Doors sees significant benefits from the new technology for his business

“We would love to use MDF for the glazing beads in doubling glazing but customers do not like the look of raw MDF. This LaserCoat technology will provide a grained look that will delight our customers, give us much more manufacturing flexibility and cut the cost of the raw materials four fold”

“MDF is also an ideal material for providing the thermal insulation required for modern doors. Our customers are increasing using translucent coatings on their doors which are not aesthetically pleasing on MDF panels – the LaserCoat technology cuts through this problem providing an attractive surface for MDF no matter the coating used”

The ‘LaserCoat’ project is supported by the Furniture Industry Research Association and the Timber Research and Development Association. It is part-funded by the Department for Business, Enterprise and Regulatory Reform.

Peter Dunn | alfa
Further information:

Further reports about: Furniture Laser LaserCoat MDF laser technology waste material wood grains

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>