Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood Industry to see new Laser research that transforms MDF with Image of Rare Wood Grains

09.09.2008
Wood and Furniture industry specialists are to gather at the University of Warwick on Wednesday 17th September to see new technology developed by researchers at the University of Warwick that uses a laser to transform MDF giving it a surface finish that looks like some of the most expensive wood grains.

The “LaserCoat” research project in a collaborative research effort consisting of eight academic, research and commercial organisations and part-financed by the Technology Strategy Board.

University of Warwick WMG researcher Dr Ken Young said:

“MDF is a superb and highly versatile material. It’s easy to work with and cheap. It is usually made from waste material so it is much kinder to the environment than using more real wood. But normally it looks rather dull in its raw state. Until now there has been no way to liven it up other than painting it.”

“Using lasers to produce a wood grain in MDF could help bring a more natural quality into homes and businesses without the financial and environmental cost of having to use new wood.”

The technology also has great potential for commercial use as it is very hardwearing and can be used for flooring or other applications where cost is an issue but where looks are important too. It can mimic a vast range of real wood grains, it can produce logos, decoration, or even coloured and shaped decorative surfaces using a powder coating version of this new laser technology.

Mick Toner, Factory Manager of Howarth Windows & Doors sees significant benefits from the new technology for his business

“We would love to use MDF for the glazing beads in doubling glazing but customers do not like the look of raw MDF. This LaserCoat technology will provide a grained look that will delight our customers, give us much more manufacturing flexibility and cut the cost of the raw materials four fold”

“MDF is also an ideal material for providing the thermal insulation required for modern doors. Our customers are increasing using translucent coatings on their doors which are not aesthetically pleasing on MDF panels – the LaserCoat technology cuts through this problem providing an attractive surface for MDF no matter the coating used”

The ‘LaserCoat’ project is supported by the Furniture Industry Research Association and the Timber Research and Development Association. It is part-funded by the Department for Business, Enterprise and Regulatory Reform.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk
http://www2.warwick.ac.uk/newsandevents/pressreleases/laser_treatment_transforms/

Further reports about: Furniture Laser LaserCoat MDF laser technology waste material wood grains

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>