Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Welding Metal Foils now Easier

The Laser Zentrum Hannover e.V. (LZH) have optimized processing methods to make laser welding of thin metal foils (50 µm to 1.5 mm) easier by using a specially designed clamping device. Also, welding costs can be cut by using a lower power solid-state laser.

For small and medium sized enterprises (SME) which use lasers to weld thin metal sheets, lasers with continuous wave radiation are often too expensive. This is due to the high output powers necessary for the welding process.

Pulsed Nd:YAG lasers are economically interesting, and offer an alternative to continuous wave lasers. Due to their high peak pulse output, welding with relatively low medium output power (100 w to 250 W) is possible, and investment costs can be reduced.

However, the narrower welding seams from the pulsed lasers not as strong as the seams from continuous lasers. Results can be improved if the parameter selection is optimized. This was the goal of a recently completed project at the Laser Zentrum Hannover e.V. (LZH).

The results of this project aim at simplifying the parameter selection for pulsed laser welding, for example pulse duration, pulse form or pulse peak output. Also, reference parameters for welding with continuous wave radiation have also been recorded. For both types of laser welding, high seams qualities could be qualified and weld imperfections avoided, as shown in surface testing and seam cross-sections. For the investigations, both ferritic and austenitic steels with sheets thicknesses up to 1.5 mm were butt joint welded.

Also, thin foils with a minimal thickness of 50 µm were butt-joint welded. To accomplish this, the LZH developed and constructed a high precision clamping unit, which not only assures a zero gap, but also avoids a lateral edge mismatch.

Especially SMEs can use the results of the welding tests, which are available in an electronic database on the LZH internet site ( The database provides welding and laser parameters as well as pictures of the expected seams surfaces, cross-sections and micro-hardness tests. Firms can use this data to estimate welding results. Apart from simplifying the selection of appropriate parameters, users can easily expand the database themselves by adding parameters of their own welding tasks to the database and accessing them when needed.

The investigations were commissioned by the Research Association of the German Welding Society (DVS) and funded by the German Federation of Industrial Research Associations "Otto von Guericke" e.V. (AIF) in project 15.297N.

Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>