Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welding by fiber laser

15.10.2008
Medical products and components in the bio-engineering and bio-analysis sector have to be made from highly bio-compatible materials that are inert vis-à-vis a variety of media. The joining method employed also has to meet special requirements.

It has to get by with as few additive materials as possible, and should under no circumstances influence or contaminate the materials. As an alternative to conventional joining techniques, laser welding offers a number of innovative solutions featuring high welding speeds, narrow weld seams and special process variants for joining transparent plastics.

A series of new beam sources enables laser characteristics to be specially adapted to these tasks. Highly advanced microsystems with complex welding contours for medical engineering and biotechnological applications, such as a new type of microfluidic chip with very narrow and closely spaced channels, make great demands on joining technology. The new chip has to be furnished with a cover film, for which the welding seam must be no more than 100µm wide.

The new TWIST® (Transmission Welding by Incremental Scanning Technique) contour-welding method developed by the Fraunhofer Institute for Laser Technology ILT meets these stringent requirements, producing high-quality welding seams at high process speeds. Based on fiber lasers, this innovative irradiation method can produce 100-µm-wide seams at a rate of up to 18 m/min.

Any potential degradation of the material due to the high intensity of the focused fiber laser light is avoided in the new process. For the welding of transparent plastics, the new beam sources enable the laser characteristics to be adapted to the polymers' absorption behavior, thus obviating the need for additional absorbers. This improved irradiation strategy preserves the advantages of laser transmission beam welding without influencing the surfaces of the components. It can be used for transparent and translucent polymers.

Contacts at the Fraunhofer ILT

If you have any questions regarding this topic, please feel free to contact our experts:

Fraunhofer Institute for Laser Technology ILT
Aachen, Germany
Dr. Alexander Olowinsky
Group manager packaging and interconnection
Micro technology department
Phone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de
Dr. Arnold Gillner
Head of the micro technology department
Phone +49 241-8906-148
arnold.gillner@ilt.fraunhofer.de
For any other questions or finding special experts please contact:
Dipl.-Phys. Axel Bauer
Head of marketing and communications
Fraunhofer-Institut für Lasertechnik ILT
Aachen, Germany
Phone: +49/241/8906-194
Fax: +49/241/8906-121
axel.bauer@ilt.fraunhofer.de

Axel Bauer | idw
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>