Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water pathways make fuel cells more efficient

24.09.2015

Researchers from the Paul Scherrer Institute (PSI) have developed a coating technique in the laboratory that could raise the efficiency of fuel cells. The PSI scientists have already applied to patent the technique, which is suitable for mass production.

Researchers from the Paul Scherrer Institute (PSI) have developed a coating technique in the laboratory that could raise the efficiency of fuel cells. Fuel cells generate electricity from hydrogen and oxygen. The gases are transported to the cell’s electrodes from the outside.


This ‘carbon paper’ was made hydophilic along certain paths. That let the gases flow through more quickly.

Paul Scherrer Institut/Markus Fischer

However, on their way to the electrodes, the gases encounter liquid water that is produced constantly in the fuel cell and should flow out of the cell. When too much water accumulates, the gases flow more slowly, thus limiting the generation of electricity.

“Our newly developed coating ensures that the liquid water and the gases flow through the porous materials in the fuel cells using separate channels. This improves the performance and the stability of the fuel cells”, says the head of the study, Pierre Boillat from the Electrochemistry Laboratory at PSI.

Fuel cells convert the chemical energy contained in the gases into electricity. The electricity produced can be used, for example, to power an electric car.

The only chemical product of the reactions taking place in fuel cells is water. The “exhaust gas” of a fuel cell car thus only contains harmless water vapour.

Fuel cell cars ready for series production have been available since 2013. But researchers around the world continue to work on raising the efficiency of fuel cell systems and lowering their costs.

Water limits electricity output

One important aspect of this work is the removal of liquid water from parts of the fuel cells where it is undesired because it disrupts the flow of the gas. For example, water gathers in the pores of what is referred to as the gas diffusion layer, a layer generally consisting of carbon fibre materials, which among other things ensure transportation and fine distribution of the hydrogen and oxygen to the cell’s electrodes. The water that gathers in the gas diffusion layer obstructs the flow of the gases and therefore restricts the power output of the cell.

In commercially available fuel cells, the carbon fibres of the gas diffusion layer are generally coated evenly with a hydrophobic polymer that aims to allow the water to run off more easily. With this coating, the water is distributed arbitrarily in the material, and the gases are often forced to follow tortuous paths through the diffusion layer. As a result, the gases only reach the electrodes slowly, thus reducing the performance of the fuel cells.

The new solution from PSI solves the problem by creating separate “run-off channels” where virtually all of the water collects. In the remaining, dry channels, the gases can then flow more quickly.

A process suitable for mass production

The PSI researchers already knew from earlier experiments that it is not just the amount but also the distribution of the water in the diffusion layer that matters. “Now for the first time we have implemented this idea in a process suitable for mass production”, explains PSI doctoral student Antoni Forner-Cuenca, who carried out the experiments in the laboratory.

The concept of the PSI researchers is to partly turn the original, water-repellent polymer coating into a hydrophilic coating along straight paths. The water is basically sucked into those channels, while the remaining areas of the gas diffusion layer remain mostly dry. The PSI scientists have already applied to patent this process.

In order to create the water channels, the researchers inserted hydrophilic (water attracting) molecules into the structure of the original polymer. First of all, they had to treat the polymer with an electron beam so that it could bond the molecules to be attached.

Electron beam and hydrophilic molecules

This involves transmitting the electron beam through a metal mask or grid to create two distinct areas: In the places where the beam passes through the grid, the original coating can later be changed to create hydrophilic channels. In the places where the beam does not pass through the grid, the original polymer remains hydrophobic.

In the area changed by the electron beam, the original polymer coating reacts chemically with particular molecules that make it become hydrophilic, thereby creating preferential pathways for the liquid water to be removed efficiently.

The process developed at PSI for attaching functional molecules with the help of an electron beam is described by the researchers as “radiation grafting”. It is similar to the grafting process common in gardening whereby valuable plants are grafted onto a foreign but robust stem. In this case, the hydrophilic molecules give the base polymer the desired hydrophilic properties.

The scientists were able to demonstrate that the channels they create do in fact suck almost all of the water into them. By contrast, the other areas remain almost completely dry. The proof was provided by images of the gas diffusion layer that the scientists obtained using neutrons from the ICON beamline of the spallation neutron source SINQ at PSI.

*This work was funded by the Swiss National Science Foundation (SNSF)(project number: 143432).

Text: Paul Scherrer Institute/Leonid Leiva

About PSI
The Paul Scherrer Institute PSI develops, builds and operates large, complex research facilities and makes them available to the national and international research community. The institute's own key research priorities are in the fields of matter and materials, energy and environment and human health. PSI is committed to the training of future generations. Therefore about one quarter of our staff are post-docs, post-graduates or apprentices. Altogether PSI employs 1900 people, thus being the largest research institute in Switzerland. The annual budget amounts to approximately CHF 380 million. (Last updated on April 2015)

A video is available at http://psi.ch/AY9s


Contact

Dr. Pierre Boillat (French, English, German)
Project Head, Neutron Radiography
Electrochemistry Laboratory
Paul Scherrer Institut
Telephone:
E-mail: pierre.boillat@psi.ch

Original publication

Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers
Antonio Forner-Cuenca, Johannes Biesdorf, Lorenz Gubler, Per Magnus Kristiansen, Thomas Justus Schmidt, Pierre Boillat
Advanced Materials, 23 September 2015
DOI: 10.1002/adma.201503557

Weitere Informationen:

http://www.psi.ch/lec/electrochemical-energy-conversion

Dagmar Baroke | idw - Informationsdienst Wissenschaft

Further reports about: Fuel cells PSI coating electricity electrodes gases hydrophilic materials polymer coating

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>