Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using optical fiber to generate a two-micron laser

09.10.2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method

In recent years, two-micron lasers (0.002 millimetre) have been of growing interest among researchers. In the areas of surgery and molecule detection, for example, they offer significant advantages compared to traditional, shorter-wavelength lasers.


Camille Bres and Svyatoslav Kharitonov describe a cost-effective way to generate two-micron lasers, using only thulium-doped optical fibers instead of amplifiers and isolators.

Credit: Alban Kakulya / EPFL

However, two-micron lasers are still in their infancy and not yet as mature as their telecom counterparts (1.55-micron). Moreover sources currently used in labs are typically bulky and expensive. Optical fibre-based 2 micron lasers are an elegant solution to these issues. This is where researchers at Photonics Systems Laboratory (PHOSL) come in.

In an article published in Light: Science & Applications, the team of Camille Brès at EPFL described a way to design these lasers at a lower cost, by changing the way optical fibres are connected to each other.

Thanks to the new configuration, they were able not only to produce very good 2 micron lasers, but also to do without an expensive and complex component that is normally required.

Bloodless surgery and long-range molecule détection

Two-micron spectral domain has potential applications in medicine, environmental sciences and industry. At these wavelengths, the laser light is easily absorbed by water molecules, which are the main constituents of human tissue.

In the realm of high precision surgery, they can be used to target water molecules during an operation and make incisions in very small areas of tissue without penetrating deeply. What is more, the energy from the laser causes the blood to coagulate on the wound, which prevents bleeding.

Two-micron lasers are also very useful for detecting key meteorological data over long distances through the air. Not to mention that they are highly effective in the processing of various industrial materials.

Replacing a cop with a detour

To create a 2 micron fibre-laser, light is usually injected into an optical-fibre ring containing a gain region which amplifies 2 micron light. The light circulates in the ring, passing through the gain region many times thus gaining more and more power, until becoming a laser. For optimal operation, these systems include a costly component called isolator, which forces the light to circulate in a single direction.

At PHOSL, researchers built a thulium-doped fibre laser that works without an isolator. Their idea was to connect the fibres differently, to steer light instead of stopping it.

"We plug a kind of deviation that redirects the light heading in the wrong direction, putting it back on track", said Camille Brès. This means no more need for the isolator, whose job is to stop light moving in the wrong direction, sort of like a traffic cop. "We replaced the traffic cop with a detour," said Svyatoslav Kharitonov, the article's lead author.

Higher quality laser

The new system not only proved to be less expensive than more traditional ones, it also showed it could generate a higher quality laser light. The explanation is as follows: the laser output gets purified because light interacts with itself in a very special way, thanks to the amplifying fibre's composition and dimensions, and the high power circulating in this atypical laser architecture.

"While the association of amplifying fibres and high power usually weakens traditional lasers performance, it actually improves the quality of this laser, thanks to our specific architecture", said Svyatoslav Kharitonov.

###

Publication: Light: Science & Applications, Isolator-free unidirectional thulium doped fibre laser

Media Contact

Camille Bres
camille.bres@epfl.ch
41-216-937-866

 @EPFL_en

http://www.epfl.ch/index.en.html 

Camille Bres | EurekAlert!

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>