Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Lab Demonstrates 3-D Printing in Glass

28.09.2009

A team of engineers and artists working at the University of Washington's Solheim Rapid Manufacturing Laboratory has developed a way to create glass objects using a conventional 3-D printer. The technique allows a new type of material to be used in such devices.

The team's method, which it named the Vitraglyphic process, is a follow-up to the Solheim Lab's success last spring printing with ceramics.

"It became clear that if we could get a material into powder form at about 20 microns we could print just about anything," said Mark Ganter, a UW professor of mechanical engineering and co-director of the Solheim Lab. (Twenty microns is less than one thousandth of an inch.)

Three-dimensional printers are used as a cheap, fast way to build prototype parts. In a typical powder-based 3-D printing system, a thin layer of powder is spread over a platform and software directs an inkjet printer to deposit droplets of binder solution only where needed. The binder reacts with the powder to bind the particles together and create a 3-D object.

Glass powder doesn't readily absorb liquid, however, so the approach used with ceramic printing had to be radically altered.

"Using our normal process to print objects produced gelatin-like parts when we used glass powders," said mechanical engineering graduate student Grant Marchelli, who led the experimentation. "We had to reformulate our approach for both powder and binder."

By adjusting the ratio of powder to liquid the team found a way to build solid parts out of powdered glass purchased from Spectrum Glass in Woodinville, Wash. Their successful formulation held together and fused when heated to the required temperature.

Glass is a material that can be transparent or opaque, but is distinguished as an inorganic material (one which contains no carbon) that solidifies from a molten state without the molecules forming an ordered crystalline structure. Glass molecules remain in a disordered state, so glass is technically a super-cooled liquid rather than a true solid.

In an instance of new technology rediscovering and building on the past, Ganter points out that 3-D printed glass bears remarkable similarities to pate de verre, a technique for creating glassware. In pate de verre, glass powder is mixed with a binding material such as egg white or enamel, placed in a mold and fired. The technique dates from early Egyptian times. With 3-D printing the technique takes on a modern twist.

As with its ceramics 3-D printing recipe, the Solheim lab is releasing its method of printing glass for general use.

"By publishing these recipes without proprietary claims, we hope to encourage further experimentation and innovation within artistic and design communities," said Duane Storti, a UW associate professor of mechanical engineering and co-director of the Solheim Lab.

Artist Meghan Trainor, a graduate student in the UW's Center for Digital Arts and Experimental Media working at the Solheim Lab, was the first to use the new method to produce objects other than test shapes.

"Creating kiln-fired glass objects from digital models gives my ideas an immediate material permanence, which is a key factor in my explorations of digital art forms," Trainor said. "Moving from idea to design to printed part in such a short period of time creates an engaging iterative process where the glass objects form part of a tactile feedback loop."

Ronald Rael, an assistant professor of architecture at the University of California, Berkeley, has been working with the Solheim Lab to set up his own 3-D printer. Rael is working on new kinds of ceramic bricks that can be used for evaporative cooling systems.

"3-D printing in glass has huge potential for changing the thinking about applications of glass in architecture," Rael said. "Before now, there was no good method of rapid prototyping in glass, so testing designs is an expensive, time-consuming process." Rael adds that 3-D printing allows one to insert different forms of glass to change the performance of the material at specific positions as required by the design.

The new method would also create a way to repurpose used glass for new functions, Ganter said. He sees recycled glass as a low-cost material that can help bring 3-D printing within the budget of a broader community of artists and designers.

The Solheim Rapid Prototyping Laboratory, on the UW's Seattle campus, specializes in advanced research and teaching in solid modeling, rapid prototyping, and innovative 3-D printing systems.

For more information, contact Ganter by e-mail at ganter@uw.edu.

Ganter | Newswise Science News
Further information:
http://www.uw.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>