Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant

17.02.2016

Zero plastics to landfill increases the need to mechanical recycling of plastics. This also applies to flame retardant plastics which are increasingly formulated with halogen-free flame retardants. According to EU regulations, plastic waste recycling is to increase in quality, and recycling rates should continue to rise: the EU target for 2020 is 70 percent.

The Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt/Germany has therefore launched a new research project on the recycling of halogen-free flame retardant plastics. For the first time, the project will provide answers to the recyclability of halogen-free flame retardant plastics.


Fraunhofer LBF investigates recycling of halogen-free flame retardant plastics in a new research project.

Photo: Fraunhofer LBF

In Europe, around 70 percent halogen-free PIN flame retardants based on phosphorus (P), inorganic substances (I) and nitrogen (N) are already in use. Their share will grow as they meet the requirement of many users for good environmental compatibility, cost efficiency and reliable flame proofing in the final application.

So far very little is known about the mechanical recycling of these plastics although, with an estimated value of three billion euros, they are very important economically in the European market. This concerns mainly the electrical and electronics industry, construction and transportation. The results of the project are significant for polymer, flame retardant and additive manufacturers, compounders, masterbatch producers, producers of plastic parts, recycling companies and consulting firms.

Ensuring recyclability

For the first time, the new multi-year research project of the Fraunhofer LBF will provide answers to the recyclability of halogen-free flame retardant plastics and suggest ways to ensure recyclability. At the same time it will make an important contribution to the socio-political issues of resource efficiency and security.

The research will be carried out as part of the project funding Industrial Community Research of the AiF (German Federation of Industrial Research Associations, here Forschungsgesellschaft Kunststoffe e.V., www.fgkunststoffe.de) and with the participation of member companies of PINFA. PINFA (Phosphorus, Inorganic & Nitrogen Flame Retardants Association, www.pinfa.org) represents manufacturers and users of halogen-free flame retardants and is part of the European Chemical Industry Council (Cefic).

The companies concerned will benefit from the new research project in many ways. They will be better able to use their own product waste in the case of flame-retardant formulations and to save costs. The findings will lead to enhanced quality products with high safety standards, potential hazards of degradation products will be identified and can be eliminated. Competitive advantages will continue to exist for using recycled plastics as a marketing tool and for constructing new products based on them.

Companies will be able to implement results immediately

As the institute draws on application-relevant and current commercial formulations, interested companies will be able to implement the findings immediately and directly. The ability to reuse production waste using the knowledge gained will generate a definite competitive edge. When using recyclates, it will be possible to minimize risks such as product liability based on the data compiled.

Due to the targeted mechanical recovery of recycled halogen-free plastics, the research project will reduce the use of raw materials and contribute to conserving and using resources more efficiently. Thanks to the improved properties of recycled plastics, such as the mechanical characteristics, it will be possible to open up new applications for these recyclates and build up new business areas.

With a market volume in Europe of three billion euros for halogen-free flame-retardant plastics, the Fraunhofer LBF estimates the potential cost saving due to using production waste at 150 million euros per year. The potential value for used plastics is significantly higher.

Recycling additives play an important part in quality improvement in the mechanical recycling of plastics. With the addition of customized stabilizers, compatibilizers and reactive additives, recycled materials achieve qualities that can compete with those of new material.

The number of recyclate additives has increased considerably in recent years. The difficulty arising from this for producers is how to develop the best solution technically and economically for the desired property profile. This is where the Fraunhofer LBF with its plastics division is available as a neutral partner that is continuously extending its knowledge of recyclates.

Visit us at the International Polyolefins Conference 2016, "Global Interdependence", February 21 - 24, 2016 at Hilton Houston North, Houston, Texas. Exhibitions stand no. 6. http://www.spe-stx.org/conference.php


About Fraunhofer LBF’s plastics research Division:
Fraunhofer LBF’s plastics research division, which evolved out of the German Plastics Institute (Deutsches Kunststoff-Institut DKI), provides its customers with advice and support along the entire added value chain from polymer synthesis to the material, its processing and product design through to the qualification and verification of complex safety-critical lightweight construction systems. The research division specializes in the management of complete development processes and advises its customers at all stages of development. High-performance thermoplastics and compounds, duromers, duromer composites and duromer compounds as well as thermoplastic elastomers play a key role. The plastics division is an identified skills center for questions regarding additivation, formulation and hybrids. It has extensive expertise in analyzing and characterizing plastics and the changes in their properties during processing and in use, and also in developing methods for time-resolved processes.


On behalf of customers, Fraunhofer LBF in Darmstadt develops, assesses and implements customized solutions for mechanical engineering components and systems, especially for safety-related components and systems. This is carried out in the performance fields of Vibration Technology, Lightweight Design, Reliability and Polymer Technology and includes solutions ranging from product design to verification – customized for you, for each individual client. In addition to the evaluation and optimized design of passive mechanical structures, the Institute designs active, mechatronic-adaptronic functional units and implements them as prototypes. In parallel it develops appropriate forward-looking numerical and experimental methods and testing techniques. Customers come mainly from automotive and commercial vehicle construction, shipbuilding, aviation, machine and plant construction, power engineering, electrical engineering, construction, medical engineering, the chemical industry and other industries. They benefit from the proven expertise of some 400 employees and cutting-edge technology accommodated in more than 11,560 square meters of laboratory and experimental space at locations in Bartningstrasse and Schlossgartenstrasse.

Weitere Informationen:

http://www.spe-stx.org/conference.php

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Further information:
http://www.lbf.fraunhofer.de

Further reports about: LBF construction flame retardants recycled plastics

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

Im Focus: Researchers discover Achilles' heel of bacteria

HZI researchers identify a protein in Salmonella that contributes to the assembly of the motility apparatus – a possible target for novel medications

Salmonellae are particularly resistant to antibiotics since they possess not only one, but two membranes that protect them from harmful substances. This makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

 
Latest News

Microbe may explain evolutionary origins of DNA folding

11.08.2017 | Life Sciences

Day to night and back again: Earth's ionosphere during the total solar eclipse

11.08.2017 | Physics and Astronomy

New handheld spectral analyzer uses power of smartphone to detect disease

11.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>