Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant

17.02.2016

Zero plastics to landfill increases the need to mechanical recycling of plastics. This also applies to flame retardant plastics which are increasingly formulated with halogen-free flame retardants. According to EU regulations, plastic waste recycling is to increase in quality, and recycling rates should continue to rise: the EU target for 2020 is 70 percent.

The Fraunhofer Institute for Structural Durability and System Reliability LBF in Darmstadt/Germany has therefore launched a new research project on the recycling of halogen-free flame retardant plastics. For the first time, the project will provide answers to the recyclability of halogen-free flame retardant plastics.


Fraunhofer LBF investigates recycling of halogen-free flame retardant plastics in a new research project.

Photo: Fraunhofer LBF

In Europe, around 70 percent halogen-free PIN flame retardants based on phosphorus (P), inorganic substances (I) and nitrogen (N) are already in use. Their share will grow as they meet the requirement of many users for good environmental compatibility, cost efficiency and reliable flame proofing in the final application.

So far very little is known about the mechanical recycling of these plastics although, with an estimated value of three billion euros, they are very important economically in the European market. This concerns mainly the electrical and electronics industry, construction and transportation. The results of the project are significant for polymer, flame retardant and additive manufacturers, compounders, masterbatch producers, producers of plastic parts, recycling companies and consulting firms.

Ensuring recyclability

For the first time, the new multi-year research project of the Fraunhofer LBF will provide answers to the recyclability of halogen-free flame retardant plastics and suggest ways to ensure recyclability. At the same time it will make an important contribution to the socio-political issues of resource efficiency and security.

The research will be carried out as part of the project funding Industrial Community Research of the AiF (German Federation of Industrial Research Associations, here Forschungsgesellschaft Kunststoffe e.V., www.fgkunststoffe.de) and with the participation of member companies of PINFA. PINFA (Phosphorus, Inorganic & Nitrogen Flame Retardants Association, www.pinfa.org) represents manufacturers and users of halogen-free flame retardants and is part of the European Chemical Industry Council (Cefic).

The companies concerned will benefit from the new research project in many ways. They will be better able to use their own product waste in the case of flame-retardant formulations and to save costs. The findings will lead to enhanced quality products with high safety standards, potential hazards of degradation products will be identified and can be eliminated. Competitive advantages will continue to exist for using recycled plastics as a marketing tool and for constructing new products based on them.

Companies will be able to implement results immediately

As the institute draws on application-relevant and current commercial formulations, interested companies will be able to implement the findings immediately and directly. The ability to reuse production waste using the knowledge gained will generate a definite competitive edge. When using recyclates, it will be possible to minimize risks such as product liability based on the data compiled.

Due to the targeted mechanical recovery of recycled halogen-free plastics, the research project will reduce the use of raw materials and contribute to conserving and using resources more efficiently. Thanks to the improved properties of recycled plastics, such as the mechanical characteristics, it will be possible to open up new applications for these recyclates and build up new business areas.

With a market volume in Europe of three billion euros for halogen-free flame-retardant plastics, the Fraunhofer LBF estimates the potential cost saving due to using production waste at 150 million euros per year. The potential value for used plastics is significantly higher.

Recycling additives play an important part in quality improvement in the mechanical recycling of plastics. With the addition of customized stabilizers, compatibilizers and reactive additives, recycled materials achieve qualities that can compete with those of new material.

The number of recyclate additives has increased considerably in recent years. The difficulty arising from this for producers is how to develop the best solution technically and economically for the desired property profile. This is where the Fraunhofer LBF with its plastics division is available as a neutral partner that is continuously extending its knowledge of recyclates.

Visit us at the International Polyolefins Conference 2016, "Global Interdependence", February 21 - 24, 2016 at Hilton Houston North, Houston, Texas. Exhibitions stand no. 6. http://www.spe-stx.org/conference.php


About Fraunhofer LBF’s plastics research Division:
Fraunhofer LBF’s plastics research division, which evolved out of the German Plastics Institute (Deutsches Kunststoff-Institut DKI), provides its customers with advice and support along the entire added value chain from polymer synthesis to the material, its processing and product design through to the qualification and verification of complex safety-critical lightweight construction systems. The research division specializes in the management of complete development processes and advises its customers at all stages of development. High-performance thermoplastics and compounds, duromers, duromer composites and duromer compounds as well as thermoplastic elastomers play a key role. The plastics division is an identified skills center for questions regarding additivation, formulation and hybrids. It has extensive expertise in analyzing and characterizing plastics and the changes in their properties during processing and in use, and also in developing methods for time-resolved processes.


On behalf of customers, Fraunhofer LBF in Darmstadt develops, assesses and implements customized solutions for mechanical engineering components and systems, especially for safety-related components and systems. This is carried out in the performance fields of Vibration Technology, Lightweight Design, Reliability and Polymer Technology and includes solutions ranging from product design to verification – customized for you, for each individual client. In addition to the evaluation and optimized design of passive mechanical structures, the Institute designs active, mechatronic-adaptronic functional units and implements them as prototypes. In parallel it develops appropriate forward-looking numerical and experimental methods and testing techniques. Customers come mainly from automotive and commercial vehicle construction, shipbuilding, aviation, machine and plant construction, power engineering, electrical engineering, construction, medical engineering, the chemical industry and other industries. They benefit from the proven expertise of some 400 employees and cutting-edge technology accommodated in more than 11,560 square meters of laboratory and experimental space at locations in Bartningstrasse and Schlossgartenstrasse.

Weitere Informationen:

http://www.spe-stx.org/conference.php

Anke Zeidler-Finsel | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Further information:
http://www.lbf.fraunhofer.de

Further reports about: LBF construction flame retardants recycled plastics

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>