Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The solar industry could gain sizeable cost advantages by using the right lasers

11.09.2012
Contactless and material-selective laser processes are of critical importance for the production of sensitive electronic components such as solar cells.
Lasers can achieve a decisive step to greater efficiencies and lower manufacturing costs for crystalline and thin-film photovoltaics. With this goal in mind, the Fraunhofer Institute for Laser Technology ILT is developing industrial-scale processes, e.g. for the high-resolution structuring of thin layers, along with corresponding mechanical components to raise production throughput rates. Selecting the most suitable laser to optimize such processes plays a predominant role in these research activities.

Competitive process engineering for the production of electronic components calls for high speeds, small structure sizes, and large-scale applicability. In organic electronics, structured printing currently allows feature sizes as small as 10 micrometers at high speeds. A significantly higher resolution and productivity can be obtained with structuring by laser. Especially important here is choosing a laser that is ideally suited to the requirements of the particular application.
“Most companies in the solar industry don’t know how much time and costs they can save by using the right laser for manufacturing thin-film solar modules or crystalline solar cells,” explains Dr. Malte Schulz-Ruthenberg, project manager at Fraunhofer ILT. “For example, completely different beam guiding and shaping approaches are required for high-speed drilling of back-contact solar cells than those used to create complex structures on electronic circuits at high processing rates .”

Consequently, researchers at Fraunhofer ILT are investigating different approaches to improve process efficiency in a range of different projects. One of these projects is exploring the possibility of multiple beam splitting using diffractive optical elements, which can dramatically increase production throughput rates. A polygon scanner is also being developed, which enables two-dimensional structuring of thin layers at extremely high speeds of several hundred meters a second.

Process for selective ablation of a silicon nitride layer on a silicon wafer.
Fraunhofer ILT, Aachen


Silicon-based thin-film module, structured using laser radiation.
Fraunhofer ILT, Aachen

Fraunhofer ILT will be presenting the demonstrator of this polygon scanner to a professional audience at the joint Fraunhofer booth in Hall 3/G22 at the European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, in Frankfurt from September 24 – 28, 2012. Combined with modern beam sources working at high repetition rates, the polygon scanner can significantly increase production throughput. It can be used for processing both thin-film solar modules and crystalline solar cells.

Series connection for rigid and flexible solar modules

In addition to machine technology, one focus of research at Fraunhofer ILT is on further developing structuring processes for thin-film solar modules. These modules require small strips of cells connected in series in order to reduce current densities, which in turn reduces electrical losses within the module. What many companies are still carrying out by means of mechanical scribing can be done quicker and more cleanly by means of laser radiation.

The challenge ILT researchers now face is to do this without impairing the functionality of the layers of conducting, semi-conducting, or insulating materials, which have thicknesses ranging from a few nanometers to a few micrometers. If, for example, residues of ablated material or thermal damage to neighboring areas occur during processing, the extreme thinness of these layers can lead to their degradation and cause the entire solar module not to work. The laser structuring processes therefore have to be adapted to the different characteristics of each individual layer. Ultrashort pulse lasers can be used for physical processes that are not feasible at longer pulse durations. This opens up new process windows, and paves the way towards new industrial-scale processes.

In the FlexLas project, funded by the European Commission and the state government of North Rhine-Westphalia, a laser structuring technique for organic solar cells on flexible film substrates is being developed at Fraunhofer ILT. This type of solar module is considered an economical, forward-looking product in the field of solar energy. It might well be possible one day to make textiles or handbags with flexible solar cells, which could be used to charge a cell phone. The laser structuring processes being developed in Aachen can also be applied to other products with multiple-layer systems, such as smart phone screens and flat lighting elements.

Production technology for crystalline solar cells

Scientists in research and development are currently working on a variety of laser processes for manufacturing crystalline solar cells. For example, a technique developed at Fraunhofer ILT allows you to drill upward of 10,000 holes a second into silicon wafers. Thin passivation layers can be removed with scarcely any effect on electrical functionality. And thanks to innovative beam-shaping optics, laser-based module manufacturing drives soldering times down to less than a second.

Using the right beam source here can significantly improve the production process. ILT researchers are currently testing a variety of different beam sources in order to fulfill the widest possible range of parameters relating to pulse duration, wavelength, process-adapted intensity distribution, etc. while minimizing laser-related damage.

The researchers in Aachen are also busy devising innovative approaches to producing high-efficiency cells. To create a texture that reduces reflection and maximizes use of the sun’s radiation, an ablation-free laser process is combined with a subsequent etching stage. This reduces laser-related material damage to a minimum and maximizes process speed, contributing in turn to a significant reduction in production costs.

For further information

Dr. Malte Schulz-Ruthenberg
Group Micro and Nanostructuring
Phone +49 241 8906-604
malte.schulz-ruhtenberg@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT, Aachen

Dr. Alexander Olowinsky
Head of the Group Micro Joining
Phone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT, Aachen

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>