Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The solar industry could gain sizeable cost advantages by using the right lasers

11.09.2012
Contactless and material-selective laser processes are of critical importance for the production of sensitive electronic components such as solar cells.
Lasers can achieve a decisive step to greater efficiencies and lower manufacturing costs for crystalline and thin-film photovoltaics. With this goal in mind, the Fraunhofer Institute for Laser Technology ILT is developing industrial-scale processes, e.g. for the high-resolution structuring of thin layers, along with corresponding mechanical components to raise production throughput rates. Selecting the most suitable laser to optimize such processes plays a predominant role in these research activities.

Competitive process engineering for the production of electronic components calls for high speeds, small structure sizes, and large-scale applicability. In organic electronics, structured printing currently allows feature sizes as small as 10 micrometers at high speeds. A significantly higher resolution and productivity can be obtained with structuring by laser. Especially important here is choosing a laser that is ideally suited to the requirements of the particular application.
“Most companies in the solar industry don’t know how much time and costs they can save by using the right laser for manufacturing thin-film solar modules or crystalline solar cells,” explains Dr. Malte Schulz-Ruthenberg, project manager at Fraunhofer ILT. “For example, completely different beam guiding and shaping approaches are required for high-speed drilling of back-contact solar cells than those used to create complex structures on electronic circuits at high processing rates .”

Consequently, researchers at Fraunhofer ILT are investigating different approaches to improve process efficiency in a range of different projects. One of these projects is exploring the possibility of multiple beam splitting using diffractive optical elements, which can dramatically increase production throughput rates. A polygon scanner is also being developed, which enables two-dimensional structuring of thin layers at extremely high speeds of several hundred meters a second.

Process for selective ablation of a silicon nitride layer on a silicon wafer.
Fraunhofer ILT, Aachen


Silicon-based thin-film module, structured using laser radiation.
Fraunhofer ILT, Aachen

Fraunhofer ILT will be presenting the demonstrator of this polygon scanner to a professional audience at the joint Fraunhofer booth in Hall 3/G22 at the European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, in Frankfurt from September 24 – 28, 2012. Combined with modern beam sources working at high repetition rates, the polygon scanner can significantly increase production throughput. It can be used for processing both thin-film solar modules and crystalline solar cells.

Series connection for rigid and flexible solar modules

In addition to machine technology, one focus of research at Fraunhofer ILT is on further developing structuring processes for thin-film solar modules. These modules require small strips of cells connected in series in order to reduce current densities, which in turn reduces electrical losses within the module. What many companies are still carrying out by means of mechanical scribing can be done quicker and more cleanly by means of laser radiation.

The challenge ILT researchers now face is to do this without impairing the functionality of the layers of conducting, semi-conducting, or insulating materials, which have thicknesses ranging from a few nanometers to a few micrometers. If, for example, residues of ablated material or thermal damage to neighboring areas occur during processing, the extreme thinness of these layers can lead to their degradation and cause the entire solar module not to work. The laser structuring processes therefore have to be adapted to the different characteristics of each individual layer. Ultrashort pulse lasers can be used for physical processes that are not feasible at longer pulse durations. This opens up new process windows, and paves the way towards new industrial-scale processes.

In the FlexLas project, funded by the European Commission and the state government of North Rhine-Westphalia, a laser structuring technique for organic solar cells on flexible film substrates is being developed at Fraunhofer ILT. This type of solar module is considered an economical, forward-looking product in the field of solar energy. It might well be possible one day to make textiles or handbags with flexible solar cells, which could be used to charge a cell phone. The laser structuring processes being developed in Aachen can also be applied to other products with multiple-layer systems, such as smart phone screens and flat lighting elements.

Production technology for crystalline solar cells

Scientists in research and development are currently working on a variety of laser processes for manufacturing crystalline solar cells. For example, a technique developed at Fraunhofer ILT allows you to drill upward of 10,000 holes a second into silicon wafers. Thin passivation layers can be removed with scarcely any effect on electrical functionality. And thanks to innovative beam-shaping optics, laser-based module manufacturing drives soldering times down to less than a second.

Using the right beam source here can significantly improve the production process. ILT researchers are currently testing a variety of different beam sources in order to fulfill the widest possible range of parameters relating to pulse duration, wavelength, process-adapted intensity distribution, etc. while minimizing laser-related damage.

The researchers in Aachen are also busy devising innovative approaches to producing high-efficiency cells. To create a texture that reduces reflection and maximizes use of the sun’s radiation, an ablation-free laser process is combined with a subsequent etching stage. This reduces laser-related material damage to a minimum and maximizes process speed, contributing in turn to a significant reduction in production costs.

For further information

Dr. Malte Schulz-Ruthenberg
Group Micro and Nanostructuring
Phone +49 241 8906-604
malte.schulz-ruhtenberg@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT, Aachen

Dr. Alexander Olowinsky
Head of the Group Micro Joining
Phone +49 241 8906-491
alexander.olowinsky@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT, Aachen

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>