Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens successfully concluded R&D project on low-energy seawater desalination ...

04.07.2011
... technology ready for full-scale testing

Having set a new energy saving benchmark for seawater desalination, Siemens is now poised to transition their ground-breaking technology to the product development phase.

As a result of an R&D initiative that commenced in October 2008, a demonstration plant was built in Singapore to treat seawater to drinking water quality. The results, which will be presented at Singapore International Water Week, show that the new process reduces desalting energy by over 50% compared to best available technology.

The next step for Siemens is to set up a full-scale system in cooperation with Singapore’s national water agency PUB by 2013.

In Singapore, which is an island nation, and in other regions, seawater is becoming increasingly important in replenishing the supply of drinking water. However, to desalinate it for potable use is an extremely energy-intensive process. “Our new technology marks a revolution in seawater desalination,” said Ruediger Knauf, Vice President of Siemens Water Technologies’ Global R&D.

“The results of our pilot facility show that the new process not only functions in the laboratory but also on a larger scale in the field. Because of its high energy efficiency and thus good CO2 footprint, electrochemical seawater desalination can play a major role in regions suffering from freshwater shortages.”

Since December 2010, the Siemens demonstration unit has been treating 50 m3 of seawater per day at a PUB facility in Singapore. The project goal was to produce World Health Organization standard drinking water quality from seawater, at the same time cutting energy consumption by half compared to current technologies. Instead of using reverse osmosis, which requires highpressure pumps to force water through semi-permeable membranes, the Siemens engineers turned to electrochemical desalination. The process combines Electrodialysis (ED) and Continuous Electrodeionization (CEDI), both applying an electric field to draw sodium and chloride ions across ion exchange membranes and out of the water. As the water itself does not have to pass through the membranes, the process can be run at low pressure, and hence low power consumption.

The seawater is pre-treated with a self-cleaning disk filter, followed by Memcor ultrafiltration modules. The pilot desalination plant is composed of three ED units arranged in series to handle high concentrations of salt. They are followed by three CEDI units assembled in a parallel flow configuration to remove smaller amounts of salt.

The energy demand of the whole process including pumping, pre-treatment, desalting, and post-treatment is less than half of what is used by the best available seawater desalination technologies today, which is typically between 3.4—4.8 kWh/m3. Besides the energy savings, other advantages are low vibration and noise levels, improved safety, and only minimal pre- and post-treatment.

These achievements have been attained in close partnership with Singapore’s national water agency PUB and Singapore’s Environment & Water Industry Programme Office (EWI), which awarded an R&D grant to co-fund Siemens as a result of a Challenge Call in 2007. “We are very pleased that our joined efforts have come to fruition and show such promising results,” said Harry Seah, Director Technology and Water Quality of PUB. “Now we are working with Siemens Water Technologies to construct a full-scale customer pilot in our upcoming desalination testing facility in Tuas.” Setting up this pilot by 2013 is the next milestone in transitioning the electrochemical desalination technology to a viable product offering.

The Challenge Call is part of EWI’s focus to raise Singapore’s status as a global hydrohub with R&D as the key driver. With a research funding of S$330 million from the National Research Foundation, EWI aims to create a vibrant and thriving R&D landscape in Singapore.

Further information about solutions for water treatment is available at: http://www.siemens.com/water

Contact USA: Ms. Allison Britt Corporate Communications Siemens Industry, Inc. Water Technologies Business Unit 2501 N. Barrington Rd. Hoffman Estates, IL 60192 USA Phone 1-847-713-8477 E-mail address allison.britt@siemens.com

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation and building technologies. With integrated automation technologies and comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. In fiscal 2010, which ended on September 30, 2010, revenue from continuing operations of the Industry Sector (excluding Osram) totaled around €30.2 billion. At the end of September 2010, Siemens Industry Sector had around 164,000 employees worldwide without consideration of Osram. Further information is available on the Internet at: www.siemens.com/industry The Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities comprising the business activities of Siemens VAI Metals Technologies, Water Technologies and Industrial Technologies. Activities include engineering and installation, operation and service for the entire life cycle. A wide-ranging portfolio of environmental solutions helps industrial companies to use energy, water and equipment efficiently, reduce emissions and comply with environmental guidelines. With around 29,000 employees worldwide (September 30), Siemens Industry Solutions posted sales of €6.0 billion in fiscal year 2010. http://www.siemens.com/industry-solutions

Stefanie Schiller | Siemens Industry
Further information:
http://www.siemens.com/siww

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>