Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens and LanzaTech partner to transform steel mill off-gases into bioethanol

19.06.2013
- Biological fermentation process converts CO and CO2 into bioethanol and platform chemicals

- Process uses energy contained in steel plant off-gases

- Ten-year co-operation to develop and market integrated environmental solutions for the steel industry worldwide

Siemens Metals Technologies and LanzaTech have signed a ten-year co-operation agreement to develop and market integrated environmental solutions for the steel industry worldwide. The collaboration will utilize the ground-breaking fermentation technology developed by LanzaTech transforming carbon-rich off-gases generated by the steel industry into low carbon bioethanol and other platform chemicals. Siemens and LanzaTech will work together on process integration and optimization, and on the marketing and realization of customer projects.


LanzaTech's microbial gas fermentation technology was successfully demonstrated in joint venture with Baosteel at a 300 ton pre-commercial plant at one of Baosteel's steel mills outside Shanghai in 2012. Siemens and LanzaTech will co-operate to develop and market this technology (Copyright: LanzaTech).

Off-gases from the production of iron and steel contain significant amounts of carbon monoxide (CO) and carbon dioxide (CO2). Globally, the iron and steel industry contributes 6.7 percent to the worldwide CO2 emissions. To produce one metric ton of steel, an average of 1.8 metric tons of carbon dioxide (CO2) is emitted. Up to now, these gases have been flared or used to create process heat and electrical energy within the plant.

LanzaTech's innovative technology, instead, re-uses the off-gases from converter, coking plant or blast furnace processes as nutrients and a source of energy. The patented biological fermentation process allows steel plant operators to make use of the chemical energy contained in off-gases in the form of CO, CO2 and H2 (hydrogen) for the eco-friendly production of bioethanol or other basic chemicals such as acetic acid, acetone, isopropanol, n-butanol or 2,3-butanediol.

The global market for ethanol alone is estimated to amount to an annual volume of over 80 million metric tons, of which 75 million metric tons is used as biofuel. Unlike the bioethanol produced through agriculture, LanzaTech's fermentation process does not compete with food production. Another major benefit of this technology is that the CO2 emissions ("carbon footprint") are between 50 to 70 percent lower than petroleum-based fuels and around one-third lower than when steel plant off-gases are converted into electricity.

LanzaTech has been operating a pilot plant in Auckland, New Zealand since 2008 utilizing raw steel mill gases. In 2012, LanzaTech became the first company ever to scale gas fermentation technology to a pre-commercial level, developing and successfully operating two facilities converting flue gas from Baosteel and Shougang steel plants into ethanol, each at an annualized capacity of 300 tons. LanzaTech is now planning to begin construction on two commercial facilities in China in 2013 with production expected in 2014. Siemens and LanzaTech are already pursuing several commercial gas fermentation project opportunities around the world.

"Global demand for affordable and sustainable energy has never been stronger," said Dr Jennifer Holmgren, CEO of LanzaTech. "Carbon emissions from steel mills can create an important new source of energy while simultaneously reducing emissions. We are delighted to be partnering with Siemens to deliver integrated solutions that improve the value and environmental footprint of the global steel industry."

"The iron and steel industry currently has to cope with a difficult market situation. Today, our customers' main goal is not to achieve new production records, but squeezing operating costs," said Norbert Petermaier, Senior Vice President at Siemens Metals Technologies. "At the same time, governments are setting ambitious targets for emission reductions, in particular with regard to CO2 emissions." That's why Siemens is concentrating on solutions which will help steel manufacturers to achieve both goals. "LanzaTech's unique CO/CO2 bio-fermentation is exactly such an opportunity and fits perfectly together with the leading position of Siemens as green solution provider for the Industry."

LanzaTech is a leader in gas fermentation technology. It provides novel and economic routes to low carbon fuels and high value chemicals from low value residues and off-gas streams. LanzaTech's unique process provides a sustainable pathway to produce platform chemicals that serve as building blocks to products that have become indispensable in our lives such as rubber, plastics, synthetic fibers and fuels. LanzaTech's technology solutions mitigate carbon emissions from industry without adversely impacting food or land security. With two commercial facilities in China slotted for construction in 2013 and full operation in 2014, LanzaTech, a company founded in New Zealand, is now a global organization. More information is available at www.lanzatech.com

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Metals Technologies Business Unit (Linz, Austria), part of the Siemens Industry Sector, is one of the world's leading life-cycle partners for the metals industry. The Business Unit offers a comprehensive technology, modernization, product and service portfolio as well as integrated automation and environmental solutions covering the entire life cycle of plants. For more information, visit http://www.siemens.com/metals

Reference Number: IMT201306468e

Contact
Mr. Rainer Schulze
Metals Technologies
Siemens AG
Turmstr. 44
4031 Linz
Austria
Tel: +49 (9131) 7-44544
rainer.schulze@siemens.com
Mr. John Williams
Scoville PR for LanzaTech
LanzaTech
Tel: +1 (206) 625 0075
jwilliams@scovillepr.com

Rainer Schulze | Siemens Metals Technologies
Further information:
http://www.siemens.com/metals
http://www.lanzatech.com

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>