Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens and LanzaTech partner to transform steel mill off-gases into bioethanol

19.06.2013
- Biological fermentation process converts CO and CO2 into bioethanol and platform chemicals

- Process uses energy contained in steel plant off-gases

- Ten-year co-operation to develop and market integrated environmental solutions for the steel industry worldwide

Siemens Metals Technologies and LanzaTech have signed a ten-year co-operation agreement to develop and market integrated environmental solutions for the steel industry worldwide. The collaboration will utilize the ground-breaking fermentation technology developed by LanzaTech transforming carbon-rich off-gases generated by the steel industry into low carbon bioethanol and other platform chemicals. Siemens and LanzaTech will work together on process integration and optimization, and on the marketing and realization of customer projects.


LanzaTech's microbial gas fermentation technology was successfully demonstrated in joint venture with Baosteel at a 300 ton pre-commercial plant at one of Baosteel's steel mills outside Shanghai in 2012. Siemens and LanzaTech will co-operate to develop and market this technology (Copyright: LanzaTech).

Off-gases from the production of iron and steel contain significant amounts of carbon monoxide (CO) and carbon dioxide (CO2). Globally, the iron and steel industry contributes 6.7 percent to the worldwide CO2 emissions. To produce one metric ton of steel, an average of 1.8 metric tons of carbon dioxide (CO2) is emitted. Up to now, these gases have been flared or used to create process heat and electrical energy within the plant.

LanzaTech's innovative technology, instead, re-uses the off-gases from converter, coking plant or blast furnace processes as nutrients and a source of energy. The patented biological fermentation process allows steel plant operators to make use of the chemical energy contained in off-gases in the form of CO, CO2 and H2 (hydrogen) for the eco-friendly production of bioethanol or other basic chemicals such as acetic acid, acetone, isopropanol, n-butanol or 2,3-butanediol.

The global market for ethanol alone is estimated to amount to an annual volume of over 80 million metric tons, of which 75 million metric tons is used as biofuel. Unlike the bioethanol produced through agriculture, LanzaTech's fermentation process does not compete with food production. Another major benefit of this technology is that the CO2 emissions ("carbon footprint") are between 50 to 70 percent lower than petroleum-based fuels and around one-third lower than when steel plant off-gases are converted into electricity.

LanzaTech has been operating a pilot plant in Auckland, New Zealand since 2008 utilizing raw steel mill gases. In 2012, LanzaTech became the first company ever to scale gas fermentation technology to a pre-commercial level, developing and successfully operating two facilities converting flue gas from Baosteel and Shougang steel plants into ethanol, each at an annualized capacity of 300 tons. LanzaTech is now planning to begin construction on two commercial facilities in China in 2013 with production expected in 2014. Siemens and LanzaTech are already pursuing several commercial gas fermentation project opportunities around the world.

"Global demand for affordable and sustainable energy has never been stronger," said Dr Jennifer Holmgren, CEO of LanzaTech. "Carbon emissions from steel mills can create an important new source of energy while simultaneously reducing emissions. We are delighted to be partnering with Siemens to deliver integrated solutions that improve the value and environmental footprint of the global steel industry."

"The iron and steel industry currently has to cope with a difficult market situation. Today, our customers' main goal is not to achieve new production records, but squeezing operating costs," said Norbert Petermaier, Senior Vice President at Siemens Metals Technologies. "At the same time, governments are setting ambitious targets for emission reductions, in particular with regard to CO2 emissions." That's why Siemens is concentrating on solutions which will help steel manufacturers to achieve both goals. "LanzaTech's unique CO/CO2 bio-fermentation is exactly such an opportunity and fits perfectly together with the leading position of Siemens as green solution provider for the Industry."

LanzaTech is a leader in gas fermentation technology. It provides novel and economic routes to low carbon fuels and high value chemicals from low value residues and off-gas streams. LanzaTech's unique process provides a sustainable pathway to produce platform chemicals that serve as building blocks to products that have become indispensable in our lives such as rubber, plastics, synthetic fibers and fuels. LanzaTech's technology solutions mitigate carbon emissions from industry without adversely impacting food or land security. With two commercial facilities in China slotted for construction in 2013 and full operation in 2014, LanzaTech, a company founded in New Zealand, is now a global organization. More information is available at www.lanzatech.com

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Metals Technologies Business Unit (Linz, Austria), part of the Siemens Industry Sector, is one of the world's leading life-cycle partners for the metals industry. The Business Unit offers a comprehensive technology, modernization, product and service portfolio as well as integrated automation and environmental solutions covering the entire life cycle of plants. For more information, visit http://www.siemens.com/metals

Reference Number: IMT201306468e

Contact
Mr. Rainer Schulze
Metals Technologies
Siemens AG
Turmstr. 44
4031 Linz
Austria
Tel: +49 (9131) 7-44544
rainer.schulze@siemens.com
Mr. John Williams
Scoville PR for LanzaTech
LanzaTech
Tel: +1 (206) 625 0075
jwilliams@scovillepr.com

Rainer Schulze | Siemens Metals Technologies
Further information:
http://www.siemens.com/metals
http://www.lanzatech.com

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>