Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for the perfect laser beam

13.05.2015

Current research in the area of laser beam cutting is focused on increasing expertise in forming fiber-guided laser beams for sheet metal cutting and transferring that knowledge to damage-free glass cutting in the display industry as well as water-jet-guided precision cutting of small parts.

As part of the EU’s HALO project (“High power Adaptable Laser beams for materials processing”), scientists at the Fraunhofer Institute for Laser Technology ILT are working on distributing the laser beam’s intensity in a way that meets the highest quality requirements while conserving resources. The project results will be presented at the LASER World of Photonics 2015 in Munich.


Simulated filaments and ablation under variation of the focus position (picture detail: enlarged removal profile).

Source: Fraunhofer ILT, Aachen


Analyzing the cutting process using high-speed videography.

Source: Fraunhofer ILT, Aachen

Today’s lasers for cutting applications are the best-selling industrial laser beam sources worldwide. Current analyses estimate that these lasers have roughly 50 percent of the market, with the most dominant application being the precise, flexible and highly productive 2D cutting used to produce nearly any contour in sheet metal blanks. At the same time, completely new cutting methods – for instance, perforations or the precise shaping of glass displays for mobile devices – are on the verge of entering industrial production.

When it comes to cutting sheet metal, the laser is a well-established tool. Laser performance of up to 8 kW is the industrial technology standard and even permits the cutting of metal sheets up to 50 mm thick. In recent years, in addition to 2D applications, 3D machining of shaped components has been increasing across the board, in part because of the extensive use of the difficult-to-machine, high-strength, press-hardened steel, particularly in the field of car body engineering.

The laser tool has demonstrated its suitability for cutting other materials – such as semiconductors, glass, plastics and composite materials – and has already been introduced in the first applications. Tool wear, which can lead to decreased quality when using conventional cutting methods, does not occur with laser cutting. However, the cut edges of laser-machined components are still rougher than those of milled metal components, for example. This is partly because the laser beam often does not have the right form needed to achieve the best result for the application in question.

Optimization potential for laser cutting

A typical laser beam possesses a very high intensity at its center, which falls away in a bell shape to the sides. But a laser beam with such a Gaussian intensity distribution is not necessarily the ideal tool for every application. For example, while this beam distribution is suitable for quickly cutting a sheet 1 mm thick at a relatively high quality, a sheet with a thickness of 1 cm requires a broader beam with greater intensity distribution at the edges. The latest research activities are focused on defining the right laser beam for cutting material of various types and thicknesses and tapping the resulting potential.

Better cutting quality, higher machining rate and profitability

This is where the EU’s HALO project (“High power Adaptable Laser beams for materials processing”) comes in. Since September 2012, an international consortium consisting of nine research institutes and industrial companies – including TRUMPF and Synova – has been working to develop application-specific beam formations. Under the leadership of Gooch & Hausego Ltd, the project participants are customizing the laser beam’s intensity distribution for each individual use case. Ultimately, the laser systems are to be equipped so that users can perform practical tests. Experts from the Fraunhofer ILT see enormous potential in this regarding cost cutting and processing speed, even as product quality improves.

Adaptive beam shapes

Fraunhofer ILT’s Macro Joining and Cutting group and the Modeling and Simulation group have been studying laser cutting for more than 25 years. In their work, the researchers apply sophisticated diagnostic methods (high-speed videography of the cutting process, streak image technology for melt flow analysis, and schlieren technique for visualizing the flow of cutting gas) and evaluation methods (meta-modelling, QuCut simulation of ripples). The scientists continuously deepen their understanding of this topic and apply appropriate laser methods for the widest range of cutting tasks. Now, as part of the HALO project, selected applications will be used to examine how the laser beam should be constructed to achieve optimal cutting results. Observing the cutting dynamics and the formation of ripples and adherent dross is also relevant.

Using simulation to achieve the perfect laser beam

Fraunhofer ILT’s Modeling and Simulation group is contributing significantly to these efforts by applying findings from computer simulations to help optimize laser processes. The group first simulates the cutting processes on the computer, before calculating the intensity distribution of the ideal laser beam for the individual application. It then designs the optical components based on this information.

The results of the HALO project will presented to the public for the first time as part of the “European Research on Laser Based Technologies” Forum at the LASER World of Photonics 2015:

Prof. Wolfgang Schulz, Nonlinear Dynamics of Laser Processing NLD, RWTH Aachen University
“HALO – Real Time Adjustment of Laserbeam Properties for Optimum Process Results”
Hall A2, Stand 250
June 25, 2015, from 13:00 to 13:20 hours

In addition, Fraunhofer ILT experts will be showing laser beam cutting processes for different materials in the macro and micro area as well as simulations of these processes at the at the LASER World of Photonics (Munich, June 22 – 25, 2015), Fraunhofer Joint Stand – Hall A3, Stand 121.


Contact

Prof. Wolfgang Schulz
Nonlinear Dynamics of Laser Processing NLD, RWTH Aachen University
Telephone +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de

Dr. Dirk Petring
Head of the Macro Joining and Cutting Group
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.world-of-photonics.com/supporting-program.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>