Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Searching for the perfect laser beam

13.05.2015

Current research in the area of laser beam cutting is focused on increasing expertise in forming fiber-guided laser beams for sheet metal cutting and transferring that knowledge to damage-free glass cutting in the display industry as well as water-jet-guided precision cutting of small parts.

As part of the EU’s HALO project (“High power Adaptable Laser beams for materials processing”), scientists at the Fraunhofer Institute for Laser Technology ILT are working on distributing the laser beam’s intensity in a way that meets the highest quality requirements while conserving resources. The project results will be presented at the LASER World of Photonics 2015 in Munich.


Simulated filaments and ablation under variation of the focus position (picture detail: enlarged removal profile).

Source: Fraunhofer ILT, Aachen


Analyzing the cutting process using high-speed videography.

Source: Fraunhofer ILT, Aachen

Today’s lasers for cutting applications are the best-selling industrial laser beam sources worldwide. Current analyses estimate that these lasers have roughly 50 percent of the market, with the most dominant application being the precise, flexible and highly productive 2D cutting used to produce nearly any contour in sheet metal blanks. At the same time, completely new cutting methods – for instance, perforations or the precise shaping of glass displays for mobile devices – are on the verge of entering industrial production.

When it comes to cutting sheet metal, the laser is a well-established tool. Laser performance of up to 8 kW is the industrial technology standard and even permits the cutting of metal sheets up to 50 mm thick. In recent years, in addition to 2D applications, 3D machining of shaped components has been increasing across the board, in part because of the extensive use of the difficult-to-machine, high-strength, press-hardened steel, particularly in the field of car body engineering.

The laser tool has demonstrated its suitability for cutting other materials – such as semiconductors, glass, plastics and composite materials – and has already been introduced in the first applications. Tool wear, which can lead to decreased quality when using conventional cutting methods, does not occur with laser cutting. However, the cut edges of laser-machined components are still rougher than those of milled metal components, for example. This is partly because the laser beam often does not have the right form needed to achieve the best result for the application in question.

Optimization potential for laser cutting

A typical laser beam possesses a very high intensity at its center, which falls away in a bell shape to the sides. But a laser beam with such a Gaussian intensity distribution is not necessarily the ideal tool for every application. For example, while this beam distribution is suitable for quickly cutting a sheet 1 mm thick at a relatively high quality, a sheet with a thickness of 1 cm requires a broader beam with greater intensity distribution at the edges. The latest research activities are focused on defining the right laser beam for cutting material of various types and thicknesses and tapping the resulting potential.

Better cutting quality, higher machining rate and profitability

This is where the EU’s HALO project (“High power Adaptable Laser beams for materials processing”) comes in. Since September 2012, an international consortium consisting of nine research institutes and industrial companies – including TRUMPF and Synova – has been working to develop application-specific beam formations. Under the leadership of Gooch & Hausego Ltd, the project participants are customizing the laser beam’s intensity distribution for each individual use case. Ultimately, the laser systems are to be equipped so that users can perform practical tests. Experts from the Fraunhofer ILT see enormous potential in this regarding cost cutting and processing speed, even as product quality improves.

Adaptive beam shapes

Fraunhofer ILT’s Macro Joining and Cutting group and the Modeling and Simulation group have been studying laser cutting for more than 25 years. In their work, the researchers apply sophisticated diagnostic methods (high-speed videography of the cutting process, streak image technology for melt flow analysis, and schlieren technique for visualizing the flow of cutting gas) and evaluation methods (meta-modelling, QuCut simulation of ripples). The scientists continuously deepen their understanding of this topic and apply appropriate laser methods for the widest range of cutting tasks. Now, as part of the HALO project, selected applications will be used to examine how the laser beam should be constructed to achieve optimal cutting results. Observing the cutting dynamics and the formation of ripples and adherent dross is also relevant.

Using simulation to achieve the perfect laser beam

Fraunhofer ILT’s Modeling and Simulation group is contributing significantly to these efforts by applying findings from computer simulations to help optimize laser processes. The group first simulates the cutting processes on the computer, before calculating the intensity distribution of the ideal laser beam for the individual application. It then designs the optical components based on this information.

The results of the HALO project will presented to the public for the first time as part of the “European Research on Laser Based Technologies” Forum at the LASER World of Photonics 2015:

Prof. Wolfgang Schulz, Nonlinear Dynamics of Laser Processing NLD, RWTH Aachen University
“HALO – Real Time Adjustment of Laserbeam Properties for Optimum Process Results”
Hall A2, Stand 250
June 25, 2015, from 13:00 to 13:20 hours

In addition, Fraunhofer ILT experts will be showing laser beam cutting processes for different materials in the macro and micro area as well as simulations of these processes at the at the LASER World of Photonics (Munich, June 22 – 25, 2015), Fraunhofer Joint Stand – Hall A3, Stand 121.


Contact

Prof. Wolfgang Schulz
Nonlinear Dynamics of Laser Processing NLD, RWTH Aachen University
Telephone +49 241 8906-204
wolfgang.schulz@ilt.fraunhofer.de

Dr. Dirk Petring
Head of the Macro Joining and Cutting Group
Telephone +49 241 8906-210
dirk.petring@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.world-of-photonics.com/supporting-program.html

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>