Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Using Lasers to Cool and Control Molecules

22.09.2010
Ever since audiences heard Goldfinger utter the famous line, “No, Mr. Bond; I expect you to die,” as a laser beam inched its way toward James Bond and threatened to cut him in half, lasers have been thought of as white-hot beams of intensely focused energy capable of burning through anything in their path.

Now a team of Yale physicists has used lasers for a completely different purpose, employing them to cool molecules down to temperatures near what’s known as absolute zero, about -460 degrees Fahrenheit. Their new method for laser cooling, described in the online edition of the journal Nature, is a significant step toward the ultimate goal of using individual molecules as information bits in quantum computing.

Currently, scientists use either individual atoms or “artificial atoms” as qubits, or quantum bits, in their efforts to develop quantum processors. But individual atoms don’t communicate as strongly with one another as is needed for qubits. On the other hand, artificial atoms—which are actually circuit-like devices made up of billions of atoms that are designed to behave like a single atom—communicate strongly with one another, but are so large they tend to pick up interference from the outside world. Molecules, however, could provide an ideal middle ground.

“It’s a kind of Goldilocks problem,” said Yale physicist David DeMille, who led the research. “Artificial atoms may prove too big and individual atoms may prove too small, but molecules made up of a few different atoms could be just right.”

In order to use molecules as qubits, physicists first have to be able to control and manipulate them—an extremely difficult feat, as molecules generally cannot be picked up or moved without disturbing their quantum properties. In addition, even at room temperature molecules have a lot of kinetic energy, which causes them to move, rotate and vibrate.

To overcome the problem, the Yale team pushed the molecules using the subtle kick delivered by a steady stream of photons, or particles of light, emitted by a laser. Using laser beams to hit the molecules from opposite directions, they were able to reduce the random velocities of the molecules. The technique is known as laser cooling because temperature is a direct measurement of the velocities in the motion of a group of molecules. Reducing the molecules’ motions to almost nothing is equivalent to driving their temperatures to virtually absolute zero.

While scientists had previously been able to cool individual atoms using lasers, the discovery by the Yale team represents the first time that lasers have just as successfully cooled molecules, which present unique challenges because of their more complex structures.

The team used the molecule strontium monofluoride in their experiments, but DeMille believes the technique will also prove successful with other molecules. Beyond quantum computing, laser cooling molecules has potential applications in chemistry, where near absolute zero temperatures could induce currently inaccessible reactions via a quantum mechanical process known as “quantum tunneling.” DeMille also hopes to use laser cooling to study particle physics, where precise measurements of molecular structure could give clues as to the possible existence of exotic, as of yet undiscovered particles.

“Laser cooling of atoms has created a true scientific revolution. It is now used in areas ranging from basic science such as Bose-Einstein condensation, all the way to devices with real-world impacts such as atomic clocks and navigation instruments,” DeMille said. “The extension of this technique to molecules promises to open an exciting new range of scientific and technological applications.”

Other authors of the paper include Edward Shuman and John Barry (both of Yale University).

DOI: 10.1038/nature09443

Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>