Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create laser the size of a virus particle

06.11.2012
Miniature laser operates at room temperature and defies the diffraction limit of light

A Northwestern University research team has found a way to manufacture single laser devices that are the size of a virus particle and that operate at room temperature.

These plasmonic nanolasers could be readily integrated into silicon-based photonic devices, all-optical circuits and nanoscale biosensors.

Reducing the size of photonic and electronic elements is critical for ultra-fast data processing and ultra-dense information storage. The miniaturization of a key, workhorse instrument -- the laser -- is no exception.

The results are published in the journal Nano Letters.

"Coherent light sources at the nanometer scale are important not only for exploring phenomena in small dimensions but also for realizing optical devices with sizes that can beat the diffraction limit of light," said Teri Odom, a nanotechnology expert who led the research.

Odom is the Board of Lady Managers of the Columbian Exposition Professor of Chemistry in the Weinberg College of Arts and Sciences and a professor of materials science and engineering in the McCormick School of Engineering and Applied Science.

"The reason we can fabricate nano-lasers with sizes smaller than that allowed by diffraction is because we made the lasing cavity out of metal nanoparticle dimers -- structures with a 3-D 'bowtie' shape," Odom said.

These metal nanostructures support localized surface plasmons -- collective oscillations of electrons -- that have no fundamental size limits when it comes to confining light.

The use of the bowtie geometry has two significant benefits over previous work on plasmon lasers: (1) the bowtie structure provides a well-defined, electromagnetic hot spot in a nano-sized volume because of an antenna effect, and (2) the individual structure has only minimal metal "losses" because of its discrete geometry.

"Surprisingly, we also found that when arranged in an array, the 3-D bowtie resonators could emit light at specific angles according to the lattice parameters," Odom said.

The Nano Letters paper, titled "Plasmonic Bowtie Nanolaser Arrays," is available at http://dx.doi.org/10.1021/nl303086r.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Process Engineering:

nachricht Electrical Storage: Safe Contacts between Battery Cells by Laser Beam Welding
20.04.2015 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Saving costs with antifouling coatings
01.04.2015 | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

World’s fastest algorithm for recognising regular DNA sequences

04.05.2015 | Life Sciences

Interzum 2015: WPC furniture with low flammability

04.05.2015 | Trade Fair News

Improved detection of radio waves from space

04.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>