Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers convert carbon dioxide into a valuable resource

18.09.2014

Researchers at Aalto University have opened a pilot plant that converts CO2 and slag, the by-product of steel manufacturing, into a valuable mineral product.

The product, Precipitated Calcium Carbonate (PCC), is used in e.g. plastics, papers, rubbers and paints. The innovative plant represents the next stage prior commercialization of a new process that consumes CO2 in order to convert a low-value by-product into a highly valuable resource for industry.


Slag and Precipitated Calcium Carbonate (PCC)

The potential economic and environmental benefits of this new technology are significant. "We are turning the industrial solid by-product from steel-manufacturing into a product which is 50 times more valuable," says Arshe Said, a postgraduate researcher at Aalto University. "Also, this process actually consumes CO2 and acts as a CO2 sink which benefits the environment greatly."

Current methods of PCC production require burning large amounts of limestone. "The conventional method involves large mining activities and has high CO2 emissions," points out Sanni Eloneva, D.Sc. (Tech).

Carbon intensive manufacturing industries are coming under increasing pressure from bodies such as the EU to reduce greenhouse gas emissions. "We believe this pilot plant will help to efforts by these industries to conform with government imposed emissions and waste targets," explains Professor Mika Järvinen.

In 2010, 13% of the total steel slag produced in Europe (16 Mt) went to the landfill. "In theory, if all the calcium in this steel slag could be recovered, approximately 13 Mt PCC/year could be produced, simultaneously sequestering nearly 6 Mt CO2/year," Järvinen continues.

The highly promising new technology also has other potential advantages. "We are currently investigating the possibility of extracting other valuable materials from the slag after the extraction of calcium", says Said.

The pilot PCC plant is now running in Otaniemi campus of Aalto University. The method used in the pilot is based on the patent owned by Aalto University Foundation together with Åbo Akademi and Rautaruukki Oyj (now part of SSAB).

For More Information

Aalto University

Arshe Said
Postgraduate researcher
arshe.said@aalto.fi
+358 50 571 8886
http://people.aalto.fi/index.html?language=english#arshe_said

Sanni Eloneva
Post-doc researcher
sanni.eloneva@aalto.fi
+358 50 448 9666

Mika Järvinen
Associate Professor
mika.jarvinen@aalto.fi
+358 50 414 2593
http://people.aalto.fi/index.html?language=english#mika_jarvinen

Pilot plant video: http://youtube.com/watch?v=HqkeYyWGHO8 

Press photos: http://materialbank.aalto.fi:80/public/40229e15c8C7.aspx

Researchers' article on the pilot plant: http://viewer.zmags.com/publication/649b3363#/649b3363/74,  Project Magazine UK

Researchers' article on the technology: http://www.sciencedirect.com/science/article/pii/S0306261912009336

Sanni Eloneva´s Doctoral dissertation (2010): Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product, http://lib.tkk.fi/Diss/2010/isbn9789526034577/

The development work has been funded by Academy of Finland, Finnish Funding Agency for Innovation (Tekes) together with many companies, CLEEN Oy´s Carbon Capture and Storage research program (CCSP), and Aalto Center for Entrepreneuship (ACE).

Johanna Juselius | AlphaGalileo

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>