Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers convert carbon dioxide into a valuable resource

18.09.2014

Researchers at Aalto University have opened a pilot plant that converts CO2 and slag, the by-product of steel manufacturing, into a valuable mineral product.

The product, Precipitated Calcium Carbonate (PCC), is used in e.g. plastics, papers, rubbers and paints. The innovative plant represents the next stage prior commercialization of a new process that consumes CO2 in order to convert a low-value by-product into a highly valuable resource for industry.


Slag and Precipitated Calcium Carbonate (PCC)

The potential economic and environmental benefits of this new technology are significant. "We are turning the industrial solid by-product from steel-manufacturing into a product which is 50 times more valuable," says Arshe Said, a postgraduate researcher at Aalto University. "Also, this process actually consumes CO2 and acts as a CO2 sink which benefits the environment greatly."

Current methods of PCC production require burning large amounts of limestone. "The conventional method involves large mining activities and has high CO2 emissions," points out Sanni Eloneva, D.Sc. (Tech).

Carbon intensive manufacturing industries are coming under increasing pressure from bodies such as the EU to reduce greenhouse gas emissions. "We believe this pilot plant will help to efforts by these industries to conform with government imposed emissions and waste targets," explains Professor Mika Järvinen.

In 2010, 13% of the total steel slag produced in Europe (16 Mt) went to the landfill. "In theory, if all the calcium in this steel slag could be recovered, approximately 13 Mt PCC/year could be produced, simultaneously sequestering nearly 6 Mt CO2/year," Järvinen continues.

The highly promising new technology also has other potential advantages. "We are currently investigating the possibility of extracting other valuable materials from the slag after the extraction of calcium", says Said.

The pilot PCC plant is now running in Otaniemi campus of Aalto University. The method used in the pilot is based on the patent owned by Aalto University Foundation together with Åbo Akademi and Rautaruukki Oyj (now part of SSAB).

For More Information

Aalto University

Arshe Said
Postgraduate researcher
arshe.said@aalto.fi
+358 50 571 8886
http://people.aalto.fi/index.html?language=english#arshe_said

Sanni Eloneva
Post-doc researcher
sanni.eloneva@aalto.fi
+358 50 448 9666

Mika Järvinen
Associate Professor
mika.jarvinen@aalto.fi
+358 50 414 2593
http://people.aalto.fi/index.html?language=english#mika_jarvinen

Pilot plant video: http://youtube.com/watch?v=HqkeYyWGHO8 

Press photos: http://materialbank.aalto.fi:80/public/40229e15c8C7.aspx

Researchers' article on the pilot plant: http://viewer.zmags.com/publication/649b3363#/649b3363/74,  Project Magazine UK

Researchers' article on the technology: http://www.sciencedirect.com/science/article/pii/S0306261912009336

Sanni Eloneva´s Doctoral dissertation (2010): Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product, http://lib.tkk.fi/Diss/2010/isbn9789526034577/

The development work has been funded by Academy of Finland, Finnish Funding Agency for Innovation (Tekes) together with many companies, CLEEN Oy´s Carbon Capture and Storage research program (CCSP), and Aalto Center for Entrepreneuship (ACE).

Johanna Juselius | AlphaGalileo

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>