Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D laser structuring

30.05.2007
Small structure, big impact. Micrometer-fine patterns in surfaces endow components with amazing properties: Plastic dashboards, for example, can be made to look like leather; sharkskin ribs on an aircraft’s fuselage reduce air resistance; micro-recesses in implants improve connection with the bone.

There are many reasons for applying microstructures to workpieces, but actually doing so is by no means easy. While lasers have been used for quite a long time to structure flat surfaces, etching techniques have had to be deployed on three-dimensional components of complex shape - and this involves using large quantities of chemicals.

The research engineers at the Fraunhofer Institute for Production Technology IPT in Aachen have now rendered the laser fit for the third dimension. In the joint “FlexOStruk” project with nine industrial partners, they have developed a machine for near-net-shape laser ablation. This can burn microstructures into free form surfaces. The engineers are presenting the new technology on the Fraunhofer stand (Hall B3, Stand 131). A finished automobile cockpit in luxurious leather-look will demonstrate its potential.

What looks simple today is the result of months of painstaking development work. The laser has to be exactly focused so that the focal point, which is about 10 micrometers wide, works with absolute precision. It is crucial for the laser to hit the surface vertically - otherwise the focus becomes distorted and the sharp microstructure blurs. The challenge was to guide the laser precisely and always at the same distance along the curves. For this purpose the research engineers utilized the attributes of a conventional machine tool. They dismantled the tool spindle - the gripper which normally holds the milling heads - and equipped the machine with a nanosecond laser instead. A scanner controls the precise movement of the laser and lays down the desired pattern on the component. “We have ultimately succeeded in integrating the entire process from the pattern development through to the finished component in our concept,” explains Sascha Bausch, group manager for laser material processing at the IPT.

It is difficult to transfer a pattern to uneven surfaces - as anyone who has tried to wallpaper a curved surface will verify. The Fraunhofer research engineers use special CAD systems to adapt the desired structure to uneven features. The “NCProfiler” software system developed in-house converts the data provided by the scientists into control commands for the laser, the scanner and the machine tool. Working in cooperation with BMW and Siemens, the IPT engineers have already developed initial female tools for plastic injection molding and produced them using this technique. They have thus demonstrated that molds for making leather-look automobile cockpits or attractive mobile phone housings can be structured by this method.

The research engineers are currently working with a nanosecond laser, says Bausch. “Its accuracy is completely adequate for injection molding. What’s more, the laser is so energy-rich that it can achieve relatively high metal-removal rates and thus shorten production times.” This is a decisive factor for the cost efficiency of the process. The engineers intend to achieve even higher precision and even finer structures in future - for optical systems or medical technology, for instance. A further aim is to develop a series-producible machine tool for everyday industrial use.

Press Office | alfa
Further information:
http://www.fraunhofer.de

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>