Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way of manufacturing a more accurate and smaller-sized electronic compass for mass production by VTT

07.03.2007
Applications include consumer mobile phones, wrist computers and GPS navigation solutions

VTT Technical Research Centre of Finland has developed a new way of manufacturing a more accurate and smaller-sized electronic compass, which also consumes less power and is suitable for mass production. Possible applications include mobile phones, wrist computers and GPS navigator solutions.

VTT has developed micromechanic magnetometers that can be used in applications such as more sensitive electronic compasses integrated in mobile phones or other mobile devices. Integrated in a mobile phone, this compass can be used to locate, for example, the nearest ATM, pharmacy or doctor's clinic. In GPS navigator solutions, the compass supports the operation of other devices, for example in cases where the satellite connection fails as the result of buildings or trees. It can also provide directional information when the user is motionless.

For manufacturing magnetometers, VTT has developed a new processing method for silicon wafers. This enables the production of the sensors used for an electronic compass on one silicon chip instead of several chips. This means that the size of the compass can be smaller and the manufacturing costs for mass production can be lowered. Thanks to the reduced need for calibration, the compass is also more reliable than the existing electronic compasses. One of the benefits for the customer is that, owing to the reduced power consumption, the battery life of a wrist computer or a mobile phone, for example, is considerably longer when using the compass.

Commercial manufacturing of the component is expected to begin in Finland in a few year's time.

The research was funded by Tekes, and the cooperative partners included VTI Technologies Oy, Suunto Oy and Okmetic Oyj.

The research will continue with the new RESTLES project, focusing on streamlining the manufacturing process and making the sensors more compact.

Sirpa Posti | alfa
Further information:
http://www.vtt.fi

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>