Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engine Helps Satellites Blast Off With Less Fuel

Engine lets satellites take more hardware into orbit, reposition more easily

Georgia Tech researchers have developed a new protoype engine that allows satellites to take off with less fuel, opening the door for deep space missions, lower launch costs and more payload in orbit.

The efficient satellite engine uses up to 40 percent less fuel by running on solar power while in space and by fine-tuning exhaust velocity. Satellites using the Georgia Tech engine to blast off can carry more payload thanks to the mass freed up by the smaller amount of fuel needed for the trip into orbit. Or, if engineers wanted to use the reduced fuel load another way, the satellite could be launched more cheaply by using a smaller launch vehicle.

The fuel-efficiency improvements could also give satellites expanded capabilities, such as more maneuverability once in orbit or the ability to serve as a refueling or towing vehicle.

The Georgia Tech project, lead by Dr. Mitchell Walker, an assistant professor in the Daniel Guggenheim School of Aerospace Engineering, was funded by a grant from the U.S. Air Force. The project team made significant experimental modifications to one of five donated satellite engines from aircraft engine manufacturer Pratt & Whitney to create the final prototype.

The key to the engine improvements, said Walker, is the ability to optimize the use of available power, very similar to the transmission in a car. A traditional chemical rocket engine (attached to a satellite ready for launch) runs at maximum exhaust velocity until it reaches orbit, i.e. first gear.

The new Georgia Tech engine allows ground control units to adjust the engine’s operating gear based on the immediate propulsive need of the satellite. The engine operates in first gear to maximize acceleration during orbit transfers and then shifts to fifth gear once in the desired orbit. This allows the engine to burn at full capacity only during key moments and conserve fuel.

“You can really tailor the exhaust velocity to what you need from the ground,” Walker said.

The Georgia Tech engine operates with an efficient ion propulsion system. Xenon (a noble gas) atoms are injected into the discharge chamber. The atoms are ionized, (electrons are stripped from their outer shell), which forms xenon ions. The light electrons are constrained by the magnetic field while the heavy ions are accelerated out into space by an electric field, propelling the satellite to high speeds.

Tech’s significant improvement to existing xenon propulsion systems is a new electric and magnetic field design that helps better control the exhaust particles, Walker said. Ground control units can then exercise this control remotely to conserve fuel.

The satellite engine is almost ready for military applications, but may be several years away from commercial use, Walker added.

Related Links
Daniel Guggenheim School of Aerospace Engineering
Dr. Mitchell Walker
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked eighth among U.S. News & World Report's top public universities, Georgia Tech's 17,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

Megan McRainey | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>