Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engine Helps Satellites Blast Off With Less Fuel

23.02.2007
Engine lets satellites take more hardware into orbit, reposition more easily

Georgia Tech researchers have developed a new protoype engine that allows satellites to take off with less fuel, opening the door for deep space missions, lower launch costs and more payload in orbit.

The efficient satellite engine uses up to 40 percent less fuel by running on solar power while in space and by fine-tuning exhaust velocity. Satellites using the Georgia Tech engine to blast off can carry more payload thanks to the mass freed up by the smaller amount of fuel needed for the trip into orbit. Or, if engineers wanted to use the reduced fuel load another way, the satellite could be launched more cheaply by using a smaller launch vehicle.

The fuel-efficiency improvements could also give satellites expanded capabilities, such as more maneuverability once in orbit or the ability to serve as a refueling or towing vehicle.

The Georgia Tech project, lead by Dr. Mitchell Walker, an assistant professor in the Daniel Guggenheim School of Aerospace Engineering, was funded by a grant from the U.S. Air Force. The project team made significant experimental modifications to one of five donated satellite engines from aircraft engine manufacturer Pratt & Whitney to create the final prototype.

The key to the engine improvements, said Walker, is the ability to optimize the use of available power, very similar to the transmission in a car. A traditional chemical rocket engine (attached to a satellite ready for launch) runs at maximum exhaust velocity until it reaches orbit, i.e. first gear.

The new Georgia Tech engine allows ground control units to adjust the engine’s operating gear based on the immediate propulsive need of the satellite. The engine operates in first gear to maximize acceleration during orbit transfers and then shifts to fifth gear once in the desired orbit. This allows the engine to burn at full capacity only during key moments and conserve fuel.

“You can really tailor the exhaust velocity to what you need from the ground,” Walker said.

The Georgia Tech engine operates with an efficient ion propulsion system. Xenon (a noble gas) atoms are injected into the discharge chamber. The atoms are ionized, (electrons are stripped from their outer shell), which forms xenon ions. The light electrons are constrained by the magnetic field while the heavy ions are accelerated out into space by an electric field, propelling the satellite to high speeds.

Tech’s significant improvement to existing xenon propulsion systems is a new electric and magnetic field design that helps better control the exhaust particles, Walker said. Ground control units can then exercise this control remotely to conserve fuel.

The satellite engine is almost ready for military applications, but may be several years away from commercial use, Walker added.

Related Links
Daniel Guggenheim School of Aerospace Engineering
http://www.ae.gatech.edu/
Dr. Mitchell Walker
http://www.ae.gatech.edu/people/mwalker/
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked eighth among U.S. News & World Report's top public universities, Georgia Tech's 17,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

Megan McRainey | EurekAlert!
Further information:
http://www.gatech.edu/news-room/release.php?id=1281

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>