Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New stamping process creates metallic interconnects, nanostructures

22.02.2007
Creating high-resolution metallic interconnects is an essential part of the fabrication of microchips and other nanoscale devices. Researchers at the University of Illinois at Urbana-Champaign have developed a simple and robust electrochemical process for the direct patterning of metallic interconnects and other nanostructures.

"Solid-state superionic stamping offers a new approach, both as a stand-alone process and as a complement to other nanofabrication techniques, for creating chemical sensors, photonic structures and electrical interconnects," said Nicholas X. Fang, a professor of mechanical science and engineering, and corresponding author of a paper published in the Feb. 14 issue of the journal Nano Letters.

The S4 process uses a patterned superionic material as a stamp, and etches a metallic film by an electrochemical reaction. In superionic materials, metal ions can move almost freely around the crystal lattice. These mobile materials can also be used in batteries and fuel cells.

Unlike conventional processing - in which patterns are first placed on photoresist, followed by metal deposition and subsequent etching - the S4 process creates high-resolution metallic nanopatterns in a single step, potentially reducing manufacturing costs and increasing yields.

The S4 process begins by carving the desired pattern into a stamp made of superionic material, such as silver sulfide, using focused ion beam milling. The stamp is then placed on the substrate and a voltage is applied. This produces an electrochemical reaction at the contact points of the interface.

The reaction generates metal ions, which migrate across the interface into the stamp. As the reaction continues, the stamp progresses into the substrate, generating features complementary to the pattern on the stamp.

"The stamp acts like a sponge, soaking up metal ions," said Fang, who also is a researcher at the university's Beckman Institute for Advanced Science and Technology, and at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems.

"The most difficult step in the S4 process is making the stamp extremely flat and smooth," said graduate student Keng H. Hsu, the paper's lead author. "Currently, our resolution for patterning details is 50 nanometers. As better tools for engraving the stamps are developed, we will achieve finer resolution."

Ultimately, the resolution will be limited by the mechanical properties of the stamp, Hsu said.

With Fang and Hsu, co-authors of the paper are Placid M. Ferreira, a U. of I. professor of mechanical science and engineering, and director of NanoCEMMS; and graduate student Peter L. Schultz.

The work was funded by the U.S. Department of Energy and the National Science Foundation.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu/news/07/0221superionic.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>