Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eagle eyes detect flaws in paper

01.02.2002


Today`s machines produce paper so rapidly that visual quality control is stretched to its limits. New automated systems with cameras and image analysis algorithms manage this flood of paper with no problem - they can even tackle the job with patterned wood and textiles.



The fastest papermaking machine in the world produces a roll of paper approximately 10 meters wide at the rate of 100 kilometers per hour. In less than 20 seconds the paper would cover an area the size of a soccer field. Impossible to visually inspect such a flood of paper for flaws. In fact, the slower pace of traditional quality controls using trained personnel often leads to a bottleneck in the entire production process. Automated image analysis systems can perform the task considerably faster and, moreover, the data they gather can be fed back directly to control the production process. The Fraunhofer Institute for Industrial Mathematics ITWM has developed a quality control system known as SPOT. It is capable of checking two and half meters of paper per second, using one camera for every meter of its width. The system identifies imperfections in paper such as glossy patches, scratches, perforations and indentations less than one millimeter in size. A further advantage of the system is that SPOT can be operated using standard PCs and expanded modularly as required.

"The hardware components are only one aspect of the system," explains IT specialist Markus Rauhut. "The attainable speed and precision of quality control depend, above all, on the algorithms of the image processor." The edges of the paper must first be identified, so that they are not registered as flaws. Then, it is important to distinguish essential image contents from nonessential and separate them. Otherwise, with such a huge quantity of paper, the amount of data gathered would be simply overwhelming. Various electronic filters extract typical flaws, which are then reproduced in a new image as "regions of interest". What constitutes a flaw and its permissible dimensions is defined at the start. This reduced-data image can be viewed immediately or be analyzed statistically as part of a defect report. Finally, individual sheets of paper can be automatically sorted and segregated on the basis of their quality.


What works well with uniformly colored paper requires much greater computational effort for wood and textiles. "If flaws in patterns are to be optically analyzed at high speed, it is essential that the existing algorithms be further simplified, despite their already optimized design," comments Rauhut, explaining the challenge. "Our TASQ and FOQUS systems would be suitable for quality control in these areas - but they have to be `trained` first. All three surpass the speed and precision of the human eye with no problem."

Dr. Johannes Ehrlenspiel | alphagalileo

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>