Making robotic movement of goods more 'pallet-able'

Under a cooperative research and development agreement with Transbotics, a Charlotte, N.C., AGV manufacturer, the National Institute of Standards and Technology (NIST) is developing advanced sensor processing and modeling algorithms to help robot forklifts verify the location and orientation of pallets laden with goods.

The experimental system utilizes two onboard, single scan-line LADAR devices to negotiate obstacles and hone in on warehouse pallets. (LADAR–Laser Detection and Ranging–is an optical technology which measures properties of scattered laser light to find range and other information about a distant target.) One LADAR device, located at the base of the AGV, is used as a safety sensor to detect obstacles such as humans in the forklift's path. It also can be used to scan inside a truck's cargo area to detect the presence of a pallet or define distances from the forklift to the truck's inside walls.

The other sensor, called the Panner, is a panning laser ranger mounted on a rotating motor at the top front of the AGV. The Panner acquires many scan lines of range data that allows the scene in front of the device to be reconstructed in various visual formats such as a pseudo-colored coded image (where colors indicate relative proximity to an object) or a 3-dimensional data point “cloud.” A computer model is then derived from the data with the output sent immediately to the AGV's control center. This allows the robot forklift to maneuver, load and unload pallets, verify the remaining space within the truck being loaded, and track the number of pallets still needing handling.

The research team recently presented the results of its visualization program at the SPIE Optics East 2006 Conference in Boston.* Transbotics is planning to implement the NIST pallet verification software on one of its AGVs in 2007 for use in real manufacturing situations.

Media Contact

Michael E. Newman EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors