Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD scientists use carbon nanotubes to detect defects in composites

06.10.2006
Two University of Delaware researchers have discovered a means to detect and identify damage within advanced composite materials by using a network of tiny carbon nanotubes, which act in much the same manner as human nerves.

The discovery has important implications both in the laboratory, where the scientists hope to better predict the life span of various composite materials, and in everyday applications, where it could become an important tool in monitoring the health of composite materials used in the construction of a variety of essential products, including commercial airliners.

The research is the work of Tsu-Wei Chou, Pierre S. du Pont Chair of Engineering, and Erik Thostenson, assistant professor of mechanical engineering, and is featured in an article published in the influential journal Advanced Materials.

Chou said the research team has been working in the field of fiber composites in conjunction with UD's Center for Composite Materials and of late has taken an interest in the reinforcement of composites with minute nanomaterials--a nanometer is a bare one billionth of one meter--and particularly with carbon nanotubes.

“Carbon nanotubes are very small but have superb qualities,” Chou said. “They are very light, with a density about one-half that of aluminum, which itself is considered exceptionally light in comparison to other metals, and yet are 30 times as strong as high-strength steel and as stiff as diamonds.”

Besides being very strong and very light, the carbon nanotubes have an incredible ability to conduct heat and electricity. In the latter case, they are 1,000 times more effective at carrying an electrical current when compared to copper.

“Carbon nanotubes have excellent properties and the challenge has been how best to utilize them, to translate those properties into applications,” Chou said.

Given the various properties, Chou and Thostenson set out to develop the carbon nanotubes as sensors embedded within composite materials.

Composite materials are generally laminates, sheets of high-performance fibers, such as carbon, glass or Kevlar, embedded in a polymer resin matrix. Chou said that the traditional composite materials have inherent weaknesses because the matrix materials-plastics-surrounding the fibers are “strong, but far less strong than the fibers.”

This results in “weak spots in composites in the interface areas in the matrix materials, particularly where there are pockets of resin,” Chou said.

As a result, defects, including tiny microcracks, can occur. Over time, those microcracks can threaten the integrity of the composite.

Thostenson said the carbon nanotubes can be used to detect defects at onset by embedding them uniformly throughout the composite material as a network capable of monitoring the health of the composite structures.

“Nanotubes are so small they can penetrate the areas in between the bundles of fiber and also between the layers of the composite, in the matrix rich areas,” Thostenson said.

Because the carbon nanotubes conduct electricity, they create a nanoscale network of sensors that work “much like the nerves in a human body,” he said.

The researchers can pass an electrical current through the network and “if there is a microcrack, it breaks the pathway of the sensors and we can measure the response,” Thostenson said.

He added that the carbon nanotubes are minimally invasive and just 0.15 percent of the total composite volume.

At present, composite material engineers have limited means to either detect the initial onset of microcracks or identify the specific type of defect. This finding will change that because the method is simple, does not require expensive equipment and is remarkably sensitive to the initial stages of microcracking, Thostenson said.

For the technique to be successful the carbon nanotubes must be scattered everywhere throughout the material and Chou credited his colleague with “developing a technique for disbursing the carbon nanotubes very uniformly in the matrix material.”

The work provides a new tool for research in the laboratory at present and has many potential applications in the future. By identifying and tracking defects in a laboratory setting, the researchers can now begin to develop strategies for more accurate predictions of the lifespan of composite materials.

“This is a very practical 'today' project,” Thostenson said. “We can take advantage of this new scale now with wide applications in the future.”

That is very important given the growing applications of composite materials in everyday life. Composites are used in sporting goods, civil infrastructure including bridges and pipes, and transportation, particularly in the aircraft industry.

Chou noted that the new Boeing 787 Dreamliner is 50 percent composites by weight and more than 50 percent by volume, making “the successful monitoring of composite structures very important.”

“These are significant issues, being able to detect defects and to understand what is the life cycle of a given composite,” Thostenson said. “It comes down to, how long will the composite last, at what point will the structure no longer be viable?”

The research is supported by funding from the Air Force Office of Scientific Research and the National Science Foundation.

Chou, who last year was named a fellow of the American Institute of Aeronautics and Astronautics, joined the UD faculty in 1969, after receiving a doctorate in materials science from Stanford University.

Thostenson joined the University faculty in 2005 after earning his doctorate in materials science and engineering the previous year. He also received a master's degree in mechanical engineering from UD and a bachelor's degree in composite materials engineering from Winona (Minn.) State University.

Neil Thomas | EurekAlert!
Further information:
http://www.udel.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>