Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD scientists use carbon nanotubes to detect defects in composites

06.10.2006
Two University of Delaware researchers have discovered a means to detect and identify damage within advanced composite materials by using a network of tiny carbon nanotubes, which act in much the same manner as human nerves.

The discovery has important implications both in the laboratory, where the scientists hope to better predict the life span of various composite materials, and in everyday applications, where it could become an important tool in monitoring the health of composite materials used in the construction of a variety of essential products, including commercial airliners.

The research is the work of Tsu-Wei Chou, Pierre S. du Pont Chair of Engineering, and Erik Thostenson, assistant professor of mechanical engineering, and is featured in an article published in the influential journal Advanced Materials.

Chou said the research team has been working in the field of fiber composites in conjunction with UD's Center for Composite Materials and of late has taken an interest in the reinforcement of composites with minute nanomaterials--a nanometer is a bare one billionth of one meter--and particularly with carbon nanotubes.

“Carbon nanotubes are very small but have superb qualities,” Chou said. “They are very light, with a density about one-half that of aluminum, which itself is considered exceptionally light in comparison to other metals, and yet are 30 times as strong as high-strength steel and as stiff as diamonds.”

Besides being very strong and very light, the carbon nanotubes have an incredible ability to conduct heat and electricity. In the latter case, they are 1,000 times more effective at carrying an electrical current when compared to copper.

“Carbon nanotubes have excellent properties and the challenge has been how best to utilize them, to translate those properties into applications,” Chou said.

Given the various properties, Chou and Thostenson set out to develop the carbon nanotubes as sensors embedded within composite materials.

Composite materials are generally laminates, sheets of high-performance fibers, such as carbon, glass or Kevlar, embedded in a polymer resin matrix. Chou said that the traditional composite materials have inherent weaknesses because the matrix materials-plastics-surrounding the fibers are “strong, but far less strong than the fibers.”

This results in “weak spots in composites in the interface areas in the matrix materials, particularly where there are pockets of resin,” Chou said.

As a result, defects, including tiny microcracks, can occur. Over time, those microcracks can threaten the integrity of the composite.

Thostenson said the carbon nanotubes can be used to detect defects at onset by embedding them uniformly throughout the composite material as a network capable of monitoring the health of the composite structures.

“Nanotubes are so small they can penetrate the areas in between the bundles of fiber and also between the layers of the composite, in the matrix rich areas,” Thostenson said.

Because the carbon nanotubes conduct electricity, they create a nanoscale network of sensors that work “much like the nerves in a human body,” he said.

The researchers can pass an electrical current through the network and “if there is a microcrack, it breaks the pathway of the sensors and we can measure the response,” Thostenson said.

He added that the carbon nanotubes are minimally invasive and just 0.15 percent of the total composite volume.

At present, composite material engineers have limited means to either detect the initial onset of microcracks or identify the specific type of defect. This finding will change that because the method is simple, does not require expensive equipment and is remarkably sensitive to the initial stages of microcracking, Thostenson said.

For the technique to be successful the carbon nanotubes must be scattered everywhere throughout the material and Chou credited his colleague with “developing a technique for disbursing the carbon nanotubes very uniformly in the matrix material.”

The work provides a new tool for research in the laboratory at present and has many potential applications in the future. By identifying and tracking defects in a laboratory setting, the researchers can now begin to develop strategies for more accurate predictions of the lifespan of composite materials.

“This is a very practical 'today' project,” Thostenson said. “We can take advantage of this new scale now with wide applications in the future.”

That is very important given the growing applications of composite materials in everyday life. Composites are used in sporting goods, civil infrastructure including bridges and pipes, and transportation, particularly in the aircraft industry.

Chou noted that the new Boeing 787 Dreamliner is 50 percent composites by weight and more than 50 percent by volume, making “the successful monitoring of composite structures very important.”

“These are significant issues, being able to detect defects and to understand what is the life cycle of a given composite,” Thostenson said. “It comes down to, how long will the composite last, at what point will the structure no longer be viable?”

The research is supported by funding from the Air Force Office of Scientific Research and the National Science Foundation.

Chou, who last year was named a fellow of the American Institute of Aeronautics and Astronautics, joined the UD faculty in 1969, after receiving a doctorate in materials science from Stanford University.

Thostenson joined the University faculty in 2005 after earning his doctorate in materials science and engineering the previous year. He also received a master's degree in mechanical engineering from UD and a bachelor's degree in composite materials engineering from Winona (Minn.) State University.

Neil Thomas | EurekAlert!
Further information:
http://www.udel.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>