Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Delft water-purification method promises radical improvement

Delft University of Technology research has discovered a method that could drastically change the way we purify water within a few years. Delft, in partnership with DHV engineering bureau, has developed a compact and environmentally-friendly purification method, in which aerobic bacteria form granules that sink quickly. An important part of the project's success was the work of Delft researcher Merle de Kreuk, who, on Tuesday, 27 June, will receive her PhD degree based on this research subject.

With the new aerobic granular sludge technology (Nereda TM), aerobic (thus oxygen using) bacterial granules are formed in the water that is to be purified. The great advantage of these granules is that they sink quickly and that all the required biological purifying processes occur within these granules.

A test reactor for the new aerobic granular sludge technology (Nereda TM).

With the new aerobic granular sludge technology (Nereda TM), aerobic (thus oxygen using) bacterial granules are formed in the water that is to be purified. The great advantage of these granules is that they sink quickly and that all the required biological purifying processes occur within these granules.

The technology therefore offers important advantages when compared to conventional water purification processes. For example, all the processes can occur in one reactor. Moreover, there is no need to use large re-sinking tanks, such as those used for conventional purification. Such large tanks are needed for this because the bacteria clusters that are formed take much longer to sink than the aerobic granule sludge.

According to Delft PhD researcher Merle de Kreuk, a Nereda TM purification installation needs only a quarter of the space required by conventional installations. Moreover, Nereda TM uses 30% less energy than the normal purification process. This Nereda TM purification process is suitable for both domestic and industrial waste water.

Delft University of Technology has a long tradition in researching the possibilities of water purification with aerobic granular sludge. The maturation of the technology is largely due to the research conducted by De Kreuk. During her PhD research with Prof. Mark van Loosdrecht, De Kreuk – working together with DHV engineering bureau and supported by STOWA and STW grants – solved various technological bottlenecks and expanded the capacity of the test installation from 3 litres per hour to 1,500 litres per hour. DHV now has the final design, which is ready for practical implementation.

The aerobic granular sludge technology is very promising, and has been nominated for the Dutch Process Innovation Award 2006. The technology is now in the commercialisation phase. In the coming years, De Kreuk will continue to contribute to the project's trajectory as a Delft researcher. DHV is currently negotiating with water purification companies to test this purification method on a larger scale. The first installations are already in use in the industrial sector.

Frank Nuijens | alfa
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>