Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new indicator of natural rubber quality

24.05.2006


To strengthen the position of natural rubber in relation to its synthetic rival, a CIRAD team has just used an innovative technique to identify a new indicator of the quality of this noble material.



Natural rubber has properties that are still unsurpassed, and many specific uses: aircraft and truck tyres, vehicle engine supports, high-speed train suspension parts, industrial glues and adhesive tapes, elastic yarns, gloves, condoms, etc. However, it is a product of biological origin, which makes its properties more variable than those of its synthetic competitors. The challenge is thus to find relevant indicators of its quality, and to this end, it has proved necessary to look into its very structure.

Natural rubber differs from its synthetic counterparts through its more complex structure. When it is dissolved in a conventional solvent, the structure is gradually and partially destroyed. A certain proportion of the natural rubber remains insoluble. This fraction is commonly referred to as the gel phase (a network of reticulated polymers swollen with liquid), or as a macrogel. The soluble fraction contains rubber macromolecules and a variable quantity of microaggregates that make up a microgel. Gel has a major impact on the rheological properties of the material, and thus very probably on blending performance (blending being one of the natural rubber processing stages). CIRAD has thus studied various aspects of its macromolecular structure (links with rheological properties, gel formation mechanisms, etc).


To date, only macrogel has been quantifiable, but researchers are now also studying microgel. To this end, they have developed a methodology based on the size exclusion chromatography (SEC) technique. The solution containing the microgel is filtered and then centrifuged. This makes it possible to analyse macromolecular structure of and quantify the microgel. By providing a more comprehensive characterization of natural rubber structure, this research has opened the way for a clearer understanding of the links between that structure and the properties of the end product. This should result in the emergence of new, more relevant quality indicators than the criteria currently used.

The natural rubber currently used in industry comes from a singler species originating from South America, Hevea brasiliensis. Rubber trees are a veritable "green factory", producing an elastomer from a renewable energy source. It takes 0.4 TOE (tonnes of oil equivalent, or the energy produced by one tonne of oil) to produce one tonne of natural rubber, but 3.7 to 5 TOE to produce one tonne of synthetic rubber. At current consumption rates, using natural rubber thus saves around 20 million TOE, ie around 40% of annual consumption for transport purposes in France, or 3% of total annual oil consumption in the European Union.

Frédéric Bonfils | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=444

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>