Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New laser technique that strips hydrogen from silicon surfaces

19.05.2006


Enables lower-temperature semiconductor processing



A team of researchers have achieved a long-sought scientific goal: using laser light to break specific molecular bonds. The process uses laser light, instead of heat, to strip hydrogen atoms from silicon surfaces, a key step in the manufacture of computer chips and solar cells.

The new technique was developed by Philip Cohen, a professor of electrical and computer engineering at the University of Minnesota, working with Vanderbilt University researchers Leonard Feldman, Norman Tolk and Zhiheng Liu along with Zhenyu Zhang from Oak Ridge National Laboratory. It is described in the May 19 issue of the journal Science.


"We live in the silicon age," said Tolk, who is a physics professor at Vanderbilt. "The fact that we have figured out how to remove hydrogen with a laser raises the possibility that we will be able to grow silicon devices at very low temperatures, close to room temperature."

Microelectronic devices are built from multiple layers of silicon. In order to keep silicon surfaces from oxidizing, semiconductor manufacturers routinely "passivate" them by exposing them to hydrogen atoms that attach to all the available silicon bonds. However, this means that the hydrogen atoms must be removed before new layers of silicon can be added. "Desorbing" the hydrogen is usually done by heating to high temperatures (800 C), which can create thermal defects in the chips and so reduce chip yields.

"One application that we intend to examine is the use of this technique to manufacture field effect transistors (FETs) that operate at speeds about 40 percent faster than ordinary transistors," said Cohen. According to Cohen, it should be possible to reduce the processing temperature of manufacturing FETs by 100 degrees Celsius, which should dramatically improve yields.

The research was carried out at Vanderbilt’s W.M. Keck Free-electron Laser Center. The free-electron laser is a special kind of laser with the advantage that its beam can be tuned through a wide range of frequencies in much the same way that you can dial up different frequencies on a radio.

Because the silicon/hydrogen system has been intensively studied, the researchers knew the strength of the bond between the silicon and hydrogen atoms. The bonds between atoms act something like an atomic spring. Like tiny springs, they tend to vibrate at certain frequencies and are most likely to absorb light photons that vibrate at these frequencies. As a result, light tuned to these "resonant" frequencies can force the bond to break.

When the researchers scanned the laser through the frequencies that they had calculated would resonate with the silicon-hydrogen bond, they found that the rate of hydrogen desorption peaked at an incident wavelength of 4.8 microns (1/6,250th of an inch). They also tested the system on silicon surfaces covered with a mixture of hydrogen and deuterium. Deuterium is an isotope of hydrogen: Instead of the single proton that hydrogen has as a nucleus, deuterium has a proton and a neutron. It has the same chemical characteristics as hydrogen but it weighs about twice as much. This weight difference means that the silicon-deuterium bond vibrates more slowly than the silicon-hydrogen bond, so the resonant wavelength is very different than for hydrogen-silicon.

Prior theoretical work in collaboration with Baio Wu, then a postdoctoral fellow at Oak Ridge National Laboratory, predicted that a substantial fraction of the hydrogen could be excited but that temperatures well above room temperature would be needed for an effective process. But once they got the setup right, the researchers found that the laser desorption process:

- Strips hydrogen from the silicon surface even at room temperature.
- Generates surprisingly little heat. In the infrared wavelengths used by the researchers, silicon is basically transparent.
- Exhibits a high degree of selectivity. With the hydrogen/deuterium mixture, the researchers demonstrated that they can remove large numbers of hydrogen atoms without detaching many of the deuterium atoms.

Selectivity of this kind could provide a way to control the growth of nanoscale structures with an unprecedented degree of precision, and it is this potential that most excites Cohen. "By selectively removing the hydrogen atoms from the ends of nanowires, we should be able to control and direct their growth, which currently is a random process," he said.

So far, three patent disclosures have been filed by the University of Minnesota, along with Vanderbilt University, on this process. At this point, the researchers can only speculate on the reasons why their technique succeeds where so many others have failed. The main clue is the totally unexpected observation that the hydrogen atoms appear to detach from the surface in pairs, as hydrogen molecules, rather than as individual atoms. Additional research will be needed to work out the atomic mechanism involved.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>