Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A laser technique that strips hydrogen atoms from silicon surfaces enables low-temperature semiconductor processing

19.05.2006


A team of researchers has achieved a long-sought scientific goal: using laser light to break specific molecular bonds. The process uses laser light, instead of heat, to strip hydrogen atoms from silicon surfaces. This is a key step in the manufacture of computer chips and solar cells, so the achievement could reduce the cost and improve the quality of a wide variety of semiconductor devices.



The technique was developed by Philip I. Cohen at the University of Minnesota, working with Vanderbilt researchers Leonard C. Feldman, Norman Tolk and Zhiheng Liu along with Zhenyu Zhang from Oak Ridge National Laboratory and the University of Tennessee. It is described in the May 19 issue of the journal Science.

“We live in the silicon age,” observes Tolk, who is a physics professor at Vanderbilt. “The fact that we have figured out how to remove hydrogen with a laser raises the possibility that we will be able to grow silicon devices at very low temperatures, close to room temperature.”


Microelectronic devices are built from multiple layers of silicon. In order to keep silicon surfaces from oxidizing, semiconductor manufacturers routinely expose them to hydrogen atoms that attach to all the available silicon bonds. However, this process known as “passivation” means that the hydrogen atoms must be removed before new layers of silicon can be added. “Desorbing” the hydrogen thermally requires high temperatures and adds substantially to difficulty of process control because these temperatures create thermal defects in the chips and so reduce chip yields.

“One application that we intend to examine is the use of this technique to manufacture field effect transistors (FETs) that operate at speeds about 40 percent faster than ordinary transistors,” says Cohen. According to the professor of electrical and computer engineering, it should be possible to reduce the processing temperature of manufacturing FETs by 100 degrees Celsius which should dramatically improve yields.

Vanderbilt, the University of Minnesota and Oak Ridge National Laboratory are filing a joint patent on the process and its potential applications.

In addition to a wide range of potential applications, the discovery has important scientific implications. Since the invention of the infrared laser, chemists have been trying to use it to drive chemical reactions along non-thermal pathways. But, as Yale chemist John C. Tully remarks in an accompanying commentary in Science, “molecules have not cooperated.” When a molecule is heated up, the weakest bond breaks first. Attempts to tune lasers to break stronger bonds have been repeatedly thwarted by the rapidity with which molecules convert the light energy into thermal energy. Describing the new findings as a “striking contrast” to previous studies, Tully observes that the researchers have “successfully accomplished a long-standing goal.”

The research was carried out at Vanderbilt’s W. M. Keck Free-electron Laser Center. The free-electron laser is a special kind of laser which has the advantage that its beam can be tuned through a wide range of frequencies in much the same way that you can dial up different frequencies on a radio. Most lasers only produce light in a few distinct frequencies. The Vanderbilt FEL operates in the infrared portion of the spectrum, which is particularly valuable for probing the structure and behavior of materials. This allowed the researchers to use laser light tuned to the frequency at which the hydrogen-silicon bonds vibrate and polarized so that the photon’s electrical field is pointed in the same direction as the silicon-hydrogen bonds.

In addition to applying this basic system to silicon surfaces covered only with hydrogen, they also tested it on surfaces covered with a mixture of hydrogen and its isotope deuterium. The researchers found that the technique can remove hydrogen atoms while leaving the deuterium atoms intact.

This degree of selectivity could provide a way to control the growth of nanoscale structures with an unprecedented degree of precision and it is this potential that most excites Cohen, who notes, “By selectively removing the hydrogen atoms from the ends of nanowires, we should be able to control and direct their growth, which currently is a random process.”

Feldman, the Stevenson Professor of Physics at Vanderbilt, maintains that the process represents a significant advance in the ability to modify the surfaces of materials at the atomic level. “We have a new way to selectively interrogate and modify surfaces. If you stop to think about it, surfaces are where the action is. It is where the rubber meets the road! So, not only will this new technique allow us to create innovative new devices, it will also provide us with invaluable new knowledge about vital surface processes. In fact, some of the most advanced nanotechnology devices that have been envisioned, like quantum computers, require the level of control that atom-specific processes of this sort make possible.”

Zhiheng Liu is a post-doctoral fellow at Vanderbilt and Zhenyu Zhang is a condensed matter theorist at Oak Ridge National Laboratory and the University of Tennessee.

The project was supported by grants from the Department of Energy, the Defense Advanced Research Projects Agency and the National Science Foundation.

David Salisbury | VU
Further information:
http://www.vanderbilt.edu/exploration/stories/hsidesorption.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>