Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A laser technique that strips hydrogen atoms from silicon surfaces enables low-temperature semiconductor processing

19.05.2006


A team of researchers has achieved a long-sought scientific goal: using laser light to break specific molecular bonds. The process uses laser light, instead of heat, to strip hydrogen atoms from silicon surfaces. This is a key step in the manufacture of computer chips and solar cells, so the achievement could reduce the cost and improve the quality of a wide variety of semiconductor devices.



The technique was developed by Philip I. Cohen at the University of Minnesota, working with Vanderbilt researchers Leonard C. Feldman, Norman Tolk and Zhiheng Liu along with Zhenyu Zhang from Oak Ridge National Laboratory and the University of Tennessee. It is described in the May 19 issue of the journal Science.

“We live in the silicon age,” observes Tolk, who is a physics professor at Vanderbilt. “The fact that we have figured out how to remove hydrogen with a laser raises the possibility that we will be able to grow silicon devices at very low temperatures, close to room temperature.”


Microelectronic devices are built from multiple layers of silicon. In order to keep silicon surfaces from oxidizing, semiconductor manufacturers routinely expose them to hydrogen atoms that attach to all the available silicon bonds. However, this process known as “passivation” means that the hydrogen atoms must be removed before new layers of silicon can be added. “Desorbing” the hydrogen thermally requires high temperatures and adds substantially to difficulty of process control because these temperatures create thermal defects in the chips and so reduce chip yields.

“One application that we intend to examine is the use of this technique to manufacture field effect transistors (FETs) that operate at speeds about 40 percent faster than ordinary transistors,” says Cohen. According to the professor of electrical and computer engineering, it should be possible to reduce the processing temperature of manufacturing FETs by 100 degrees Celsius which should dramatically improve yields.

Vanderbilt, the University of Minnesota and Oak Ridge National Laboratory are filing a joint patent on the process and its potential applications.

In addition to a wide range of potential applications, the discovery has important scientific implications. Since the invention of the infrared laser, chemists have been trying to use it to drive chemical reactions along non-thermal pathways. But, as Yale chemist John C. Tully remarks in an accompanying commentary in Science, “molecules have not cooperated.” When a molecule is heated up, the weakest bond breaks first. Attempts to tune lasers to break stronger bonds have been repeatedly thwarted by the rapidity with which molecules convert the light energy into thermal energy. Describing the new findings as a “striking contrast” to previous studies, Tully observes that the researchers have “successfully accomplished a long-standing goal.”

The research was carried out at Vanderbilt’s W. M. Keck Free-electron Laser Center. The free-electron laser is a special kind of laser which has the advantage that its beam can be tuned through a wide range of frequencies in much the same way that you can dial up different frequencies on a radio. Most lasers only produce light in a few distinct frequencies. The Vanderbilt FEL operates in the infrared portion of the spectrum, which is particularly valuable for probing the structure and behavior of materials. This allowed the researchers to use laser light tuned to the frequency at which the hydrogen-silicon bonds vibrate and polarized so that the photon’s electrical field is pointed in the same direction as the silicon-hydrogen bonds.

In addition to applying this basic system to silicon surfaces covered only with hydrogen, they also tested it on surfaces covered with a mixture of hydrogen and its isotope deuterium. The researchers found that the technique can remove hydrogen atoms while leaving the deuterium atoms intact.

This degree of selectivity could provide a way to control the growth of nanoscale structures with an unprecedented degree of precision and it is this potential that most excites Cohen, who notes, “By selectively removing the hydrogen atoms from the ends of nanowires, we should be able to control and direct their growth, which currently is a random process.”

Feldman, the Stevenson Professor of Physics at Vanderbilt, maintains that the process represents a significant advance in the ability to modify the surfaces of materials at the atomic level. “We have a new way to selectively interrogate and modify surfaces. If you stop to think about it, surfaces are where the action is. It is where the rubber meets the road! So, not only will this new technique allow us to create innovative new devices, it will also provide us with invaluable new knowledge about vital surface processes. In fact, some of the most advanced nanotechnology devices that have been envisioned, like quantum computers, require the level of control that atom-specific processes of this sort make possible.”

Zhiheng Liu is a post-doctoral fellow at Vanderbilt and Zhenyu Zhang is a condensed matter theorist at Oak Ridge National Laboratory and the University of Tennessee.

The project was supported by grants from the Department of Energy, the Defense Advanced Research Projects Agency and the National Science Foundation.

David Salisbury | VU
Further information:
http://www.vanderbilt.edu/exploration/stories/hsidesorption.html

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>