Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

US, Polish researchers develop technology for creation of antiwear polymer films

30.03.2006


When Michael Furey, professor of mechanical and biomedical engineering, at Virginia Tech, met Czeslaw Kajdas, then with the Radom Technical University in Poland, at a conference in Europe in 1981, they had differing views on how to form polymer films on surfaces to reduce wear. The result of their eventual collaboration has been fundamental discoveries in surface chemistry and dozens of compounds that reduced wear in metals, advanced alloys, and ceramics. These include ashless antiwear additives for fuels, such as for diesel, jet, and two-cycle gasoline fuels; lubricants for automotive and industrial applications; and a variety of applications in which environmental concerns are important.



At the 231st American Chemical Society National Meeting in Atlanta on March 26-30, Furey will discuss the novel concept of molecular design to create additives and compounds which will reduce wear in liquid and vapor phase applications.

Tribopolymerization, developed by Furey and Kajdas, involves continuous formation of thin polymeric films on rubbing surfaces to reduce wear and surface damage. The films are self-replenishing. Specifically selected small molecules (monomers) adsorb on surfaces. Under the action of sliding contact, thin protective polymer films will form.


Furey first demonstrated the concept more than 30 years ago. At the 1981 conference, Kajdas expressed interest in Furey’s idea of surface polymerization. "For condensation-type monomers, I felt that the high surface temperatures produced by friction could initiate polymerization. Kajdas, who was interested in another class of monomers, addition-type, suggested that the emission of low-energy electrons could initiate surface polymerization," Furey recalls. "These were not competing theories, only our ideas as to what was most important for two classes of monomers."

The 1981 military crackdown in Poland sealed off the country and stalled the collaboration, but in 1986, after Kajdas had moved to the Warsaw University of Technology Institute of Chemistry at Plock, he came to Virginia Tech as a visiting professor and then returned every summer. Kajdas’ Ph.D. student, Roman Kempinski, also came to Virginia Tech as a Fulbright Scholar. The international team’s first research was funded by the U.S. Department of Energy’s Energy-Related Inventions Program, and subsequently by the National Science Foundation (NSF).

"As a result of this research, we have reached a better understanding of the fundamental process of tribopolymerization, including the action of low- energy electrons emitted from rubbing surfaces," said Furey. "With NSF funding, we were able to design, build, and use an advanced system for measuring such particles (a Ph.D. thesis by Gus Molina)."

Another result was several effective additives for reducing wear with metals, alloys, and ceramics in both liquid and vapor phase applications. These ashless compounds find uses in an enormous variety of applications. One example is a minimalist pretreatment for small engines. Putting oil in engines to test them at the factory, even when most of the oil is removed afterwards, costs thousands of dollars. Furey and Kajdas developed a lubricant that replaces 500 grams of oil with 5 grams of lubricant. It also saves the time of filling and emptying the engines with oil.

"Molecular design is a powerful approach that does not rely on the usual trial-and-error," Furey said.

Furey and Kajdas’ collaboration has resulted in many publications, presentations at scientific meetings in 12 countries, a number of Ph.D. dissertations and master’s degree theses, six patents, and the company, Tribochem International Ltd., doing business in Blacksburg, Va., and Poland. Tribochem, the Institute for Terotechnology in Radom, Poland, and the Central Laboratory of Petroleum in Warsaw recently agreed to collaborate to move the discoveries and knowledge into practical and industrial applications.

Furey will present the paper on tribochemistry and tribopolymerization (COLL 462) at 4:30 p.m., Wednesday, March 29 at the OMNI at CNN Center in the Sycamore room at the Tribology Symposium. Co-authors are Kajdas, Kempinski; Gustavo J. Molina of the School of Technology at Georgia Southern University, and Brian Vick, associate professor of mechanical engineering at Virginia Tech. Kajdas retired from the university and is now associated with the Central Laboratory of Petroleum. Kempinski is now a professor at Warsaw University of Technology Institute of Chemistry.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>