Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New manufacturing process helps metals lose weight

13.12.2005


A pioneering manufacturing process that can turn titanium, stainless steel and many other metals into a new breed of engineering components could have a big impact across industry.



Unlike conventional solid-metal components, the new parts have a tiny lattice-like structure, similar to scaffolding but with poles twice the diameter of a human hair, making them ultra-light. Because loads are channelled along the poles, the parts can comprise up to 70% air while remaining strong enough to perform correctly.

The components could replace solid metal in integrated circuits, automotive applications and many other fields of engineering. Aircraft parts, for example, could be produced that are over 50% lighter than conventional alternatives. The reduction in aircraft weight would cut fuel requirements, bringing down the cost of air travel and reducing the emissions produced by the combustion of aviation fuels that are a major contributor to climate change.


The world’s first commercial-scale system for the rapid manufacture of these new-generation metal components is now being developed by engineers at the University of Liverpool, in collaboration with MCP (Mining and Chemical Products) Ltd and funded by the Engineering and Physical Sciences Research Council (EPSRC).

Harnessing a technique known as selective laser melting (SLM), this fully automated system builds up components, layer by layer, from fine metal powders using an infra-red laser beam to melt the powders into the required structure. Layers can be as thin as 25 microns, making it possible to produce complex parts in which thermal, impact-absorption and many other properties can be distributed in specific places to meet the requirements of particular applications. This is not possible with conventionally manufactured ‘solid’ metals.

For instance, the system can manufacture components designed for use wherever heat is generated and needs to be removed quickly. Such parts might include the heat sinks that cool the processor chips in personal computers. The lattice in these heat sinks can be designed to facilitate heat flow and deliver increased cooling rates, resulting in improved chip reliability and fewer PC crashes.

Although other ways of making some types of latticed metals exist, they do not enable the features of the lattice to be precisely ‘designed in’ to meet customised requirements. The metals they produce are also limited in their usefulness because they have to be machined into the final required shape, rather than ‘built for purpose’ step by step. A typical example is the manufacture of composite components used in motor sport.

The new system’s versatility means it could manufacture better-performing components of this type, as well as products for the healthcare and chemicals sectors. For instance, it is possible to imagine miniaturised chemical reactors being built using SLM and replacing large chemical plants at some point in the future, with substantial benefits in terms of production, flexibility and safety.

The project is building on previous EPSRC-funded work carried out over the last six years by the University of Liverpool team, which is led by Dr Chris Sutcliffe. Dr Sutcliffe says: “There is worldwide interest in developing a standard rapid manufacturing process based on SLM. Our system will produce optimised engineering components that can’t be made in any other way and will give the industry that has supported us a significant advantage in future markets.”

The new manufacturing system, which represents a highly innovative approach to the production of metal components, is due to be in full commercial use next year. The team is already working on a larger version which should be ready for commissioning in around 18 months.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>