Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New manufacturing process helps metals lose weight

13.12.2005


A pioneering manufacturing process that can turn titanium, stainless steel and many other metals into a new breed of engineering components could have a big impact across industry.



Unlike conventional solid-metal components, the new parts have a tiny lattice-like structure, similar to scaffolding but with poles twice the diameter of a human hair, making them ultra-light. Because loads are channelled along the poles, the parts can comprise up to 70% air while remaining strong enough to perform correctly.

The components could replace solid metal in integrated circuits, automotive applications and many other fields of engineering. Aircraft parts, for example, could be produced that are over 50% lighter than conventional alternatives. The reduction in aircraft weight would cut fuel requirements, bringing down the cost of air travel and reducing the emissions produced by the combustion of aviation fuels that are a major contributor to climate change.


The world’s first commercial-scale system for the rapid manufacture of these new-generation metal components is now being developed by engineers at the University of Liverpool, in collaboration with MCP (Mining and Chemical Products) Ltd and funded by the Engineering and Physical Sciences Research Council (EPSRC).

Harnessing a technique known as selective laser melting (SLM), this fully automated system builds up components, layer by layer, from fine metal powders using an infra-red laser beam to melt the powders into the required structure. Layers can be as thin as 25 microns, making it possible to produce complex parts in which thermal, impact-absorption and many other properties can be distributed in specific places to meet the requirements of particular applications. This is not possible with conventionally manufactured ‘solid’ metals.

For instance, the system can manufacture components designed for use wherever heat is generated and needs to be removed quickly. Such parts might include the heat sinks that cool the processor chips in personal computers. The lattice in these heat sinks can be designed to facilitate heat flow and deliver increased cooling rates, resulting in improved chip reliability and fewer PC crashes.

Although other ways of making some types of latticed metals exist, they do not enable the features of the lattice to be precisely ‘designed in’ to meet customised requirements. The metals they produce are also limited in their usefulness because they have to be machined into the final required shape, rather than ‘built for purpose’ step by step. A typical example is the manufacture of composite components used in motor sport.

The new system’s versatility means it could manufacture better-performing components of this type, as well as products for the healthcare and chemicals sectors. For instance, it is possible to imagine miniaturised chemical reactors being built using SLM and replacing large chemical plants at some point in the future, with substantial benefits in terms of production, flexibility and safety.

The project is building on previous EPSRC-funded work carried out over the last six years by the University of Liverpool team, which is led by Dr Chris Sutcliffe. Dr Sutcliffe says: “There is worldwide interest in developing a standard rapid manufacturing process based on SLM. Our system will produce optimised engineering components that can’t be made in any other way and will give the industry that has supported us a significant advantage in future markets.”

The new manufacturing system, which represents a highly innovative approach to the production of metal components, is due to be in full commercial use next year. The team is already working on a larger version which should be ready for commissioning in around 18 months.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>