Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB researchers develop hybrid silicon evanescent laser

16.11.2005


In what promises to be an important advance, researchers at the University of California, Santa Barbara have developed a novel laser by bonding optical gain layers directly to a silicon laser cavity. This hybrid laser offers an alternative to silicon Raman lasers and is an order of magnitude shorter. The laser is optically pumped, operates in continuous wave mode, and only needs 30 mW of input pump power.



This evanescent silicon laser demonstration is the first step toward an electrically pumped hybrid silicon laser. Increasingly, the performance of microelectronic systems will depend more on the connections between chips and devices than on the characteristics of the chips and devices themselves. As semiconductor systems get smaller, interconnect capacity and power dissipation will limit their performance. Optical interconnects could alleviate these limitations but the challenge has been to create a semiconductor laser that can be fully integrated with silicon microelectronics.

The laser developed by John Bowers and his students, Alex Fang and Hyundai Park, uses InAlGaAs quantum wells to provide optical amplification. "The ability to combine the best of both worlds (i.e. III-V gain material with silicon photonics) could lead to a new way of enabling highly integrated laser sources with intelligent opto-electronic devices for future optical communications at low cost," said John Bowers, professor of electrical and computer engineering at UCSB .

Barbara B. Gray | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>