Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement of atoms viewed at 100 times higher than previous resolution

06.05.2005


A paper published in Nature, by scientists at the Universities of Sheffield and Warwick and the European Synchrotron Radiation Facility, describes how experts have used X-rays to see structures in unprecedented detail at the atomic scale. The technique is 100 times more sensitive than any other method, and has the potential to allow scientists to improve things like data storage, healthcare sensors and security systems.



Prof Mike Gibbs, of the Department of Engineering Materials at the University of Sheffield explains, “We have known for some time that when certain magnetic materials are exposed to a magnetic field they lengthen or contract slightly. However, we still don’t have a detailed understanding”.

“This new technique uses X rays to look at the movement of atoms with unprecedented resolution; 100 times better than ever achieved before.”


“Once we can look at atom positions in this way, we will get a much better idea about the atomic structures of a range of materials, meaning that we will be able refine our understanding of how structures and materials are made up. This should lead to improvements in a wide range of technologies in the future.”

Dr. Robert Pettifer, of the University of Warwick says, “To improve a technique by two orders of magnitude means that phenomena can now be investigated which produce subtle changes in the local atomic environment. For example, the ways atoms respond to temperature, electric field and pressure as well as the magnetic field investigated in our paper can now be investigated. Movements comparable to the size of a nucleus can now be resolved. The technique will be especially valuable for materials which are not easily investigated by more conventional techniques such as glasses and thin films.

“We can see applications in such diverse things such as computer disks, domestic refrigerators, and understanding the Earth’s core.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>