Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen sponge saves energy during the production of plastics

14.02.2005


Dutch researcher Bart de Graaf has developed a solid oxygen carrier, a sort of oxygen sponge. The oxygen from the sponge reacts with hydrogen to produce water. With De Graaf’s discovery a lot of energy can be saved during the production of raw materials for plastics.



Hydrogen is released during the conversion of ethane and propane to ethylene and propylene, raw materials for the production of plastics. Using oxygen from a so-called oxygen sponge to convert hydrogen into water saves a lot of energy during the production process.

The oxygen sponge only reacts with the hydrogen released and not with other compounds in the chemical reaction, such as ethane and propane. This allows more starting materials to be converted in one cycle and makes the separation of the starting material and product both easier and cheaper. This new process therefore saves a lot of energy.


Shopping bags, Australian banknotes and many other materials contain the plastics polyethylene or polypropylene. These are made from the raw materials ethylene and propylene. Linking together these raw materials creates a large network of molecules, a plastic.

The majority of ethylene and propylene is made from ethane and propane, produced during the cracking of crude oil. Ethane and propane are converted into ethylene and propylene plus hydrogen in a reactor vessel at a very high temperature.

Unfortunately, this chemical reaction is an equilibrium reaction. This means that although ethylene and propylene are formed, the starting materials are not completely used up in the reaction. The product produced is therefore contaminated. It costs a lot of energy to separate the starting materials and products, and to return the starting materials left to the reactor.

Bart de Graaf developed a process which directly removes one of the products from the equilibrium reaction. Using an oxygen sponge to convert the hydrogen released into water allows the reaction to continue until most of the starting materials have been used up.

The research was funded by the Netherlands Organisation for Scientific Research.

Dr Bart de Graaf | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>