Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Futuristic ’smart’ yarns on the horizon

19.11.2004


Technologies used to spin wool have been adapted to produce yarns made solely from carbon nanotubes (CNTs)



In a collaborative effort, scientists at CSIRO Textile and Fibre Technology (CTFT) have achieved a major technological breakthrough that should soon lead to the production of futuristic strong, light and flexible ’smart’ clothing materials. In partnership with the world-renowned NanoTech Institute at the University of Texas at Dallas, CTFT has adapted textile technologies used to spin wool and other fibres to produce yarns made solely from carbon nanotubes (CNTs).

Synthetically-made CNTs have a range of unique physical properties – including the ability to conduct electricity and heat – which provide them with the potential to be used in the manufacture of materials with a diverse range of applications.


Initial research into the potential uses of the new material is focussed on the production of vests and ’soft’ body armour to provide protection from bullets and other small ballistic missiles. This application exploits the excellent mechanical properties of the CNTs. However, the ability to incorporate electronic sensors and actuators into CNT yarn also makes it a potentially valuable addition to the range of specialist materials now being used in medical and military applications. It could, for example, be used to produce garments that act as electrically-driven ’muscles’.

In an article in the latest edition of the prestigious journal, Science, the ability to spin CNTs into yarn is described as a major breakthrough. The significance of the development is that it is expected to make the manufacture of pure CNT yarns economically feasible. CNT yarns, due to their unprecedented combination of mechanical and electronic properties, are likely to be used in electronic textiles and electron emitters for ultra high-intensity fluorescent lamps.

The development of spun CNT yarns is based on the concept of scaling down the dimensions of conventional fibres and yarns from the microscale to the nanoscale using the ancient technology of twist-based spinning. "We believe CNTs, either as pure yarns or composites, will revolutionise engineered fabrics due to their excellent strength and toughness and their high electrical and thermal conductivities," says CTFT’s research team leader, Ken Atkinson.

Heather Forward | EurekAlert!
Further information:
http://www.csiro.au

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>