Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny tools carve glass

04.11.2004


Tools so tiny that they are difficult to see, are solving the problems of carving patterns in glass, ceramics and other brittle materials, according to a Penn State engineer.



"Even very brittle materials like glass will cut smoothly at a micron level," says Dr. Eric R. Marsh, associate professor of mechanical engineering. "The tools we are making are small enough so that the brittle materials behave like a malleable material like aluminum, producing smooth curly chips of glass or ceramic."

Normally, brittle materials come apart in large uncontrolled chunks or they simply fracture completely. The researchers are trying to control the machining process so that well-defined, accurate, microscopic patterns can be created in brittle materials.


Demands for smaller channels in glass for micro fluids, dimples to create tiny chemical reservoirs and MEMs – microelectromechanical systems, fuel the need to find quick, inexpensive ways to create these tiny devices.

Marsh; Chris J. Morgan, graduate student at University of Kentucky, and R. Ryan Vallance, assistant professor, George Washington University, begin with polycrystalline diamond on Carborundum -- a commercially available product -- to create miniature drills and end mills using microelectro discharge machining. EDM removes parts of the millimeter diamond surface by sputtering them off to fashion the tool. They use this noncontact method because the tools are tiny and fragile. The Carborundum base becomes the shaft of the drill or mill end.

The researchers describe how the tools are created and used in an online edition of the Journal of Micromechanics and Microengineering, which will be available in hard copy on Dec. 10. The engineers take advantage of the uneven surface created by diamond removal at the microscopic level and use the rough surface for cutting.

The tools spin exceptionally fast to remove material to create dimples or channels. The fast spinning, however, does not mean that the carving takes place rapidly. The tools are so small and so fragile that only very slight pressure, about as much as a paperclip exerts, sculpts the surface. It can take as long as an hour to produce one dimple a half millimeter in diameter.

Slow as that may be, the process would be faster than the current process which employs photolithography. Tiny tools can be designed and manufactured in less than a day and used to create the desired surface immediately. Photolithography requires many more steps and much longer lead-time.

While photolithography is typically only used on silicon chips or wafers, the tiny tools will work on glass, emeralds, sapphires, ceramics of all kinds and calcium fluorite. There are applications in optics, DNA analysis and biocomputers on a chip.

Tiny tools can also create shapes that photolithography cannot. In photolithography, surface shapes have to be built up by layer after layer of material creating a stair-step surface. Tiny tools grind and shape smooth surfaces although they cannot yet achieve the nano-size structures available with photolithography. "This really is a way to get shapes that we cannot get any other way," says Marsh.

Currently, the researchers are using existing machines designed for larger equipment to operate the tools, but they hope to develop a tabletop appliance. Equipment donations from Professional Instruments and Lion Precision in Minnesota and Panasonic supported this work. The National Science Foundation funded this research.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>