Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny tools carve glass


Tools so tiny that they are difficult to see, are solving the problems of carving patterns in glass, ceramics and other brittle materials, according to a Penn State engineer.

"Even very brittle materials like glass will cut smoothly at a micron level," says Dr. Eric R. Marsh, associate professor of mechanical engineering. "The tools we are making are small enough so that the brittle materials behave like a malleable material like aluminum, producing smooth curly chips of glass or ceramic."

Normally, brittle materials come apart in large uncontrolled chunks or they simply fracture completely. The researchers are trying to control the machining process so that well-defined, accurate, microscopic patterns can be created in brittle materials.

Demands for smaller channels in glass for micro fluids, dimples to create tiny chemical reservoirs and MEMs – microelectromechanical systems, fuel the need to find quick, inexpensive ways to create these tiny devices.

Marsh; Chris J. Morgan, graduate student at University of Kentucky, and R. Ryan Vallance, assistant professor, George Washington University, begin with polycrystalline diamond on Carborundum -- a commercially available product -- to create miniature drills and end mills using microelectro discharge machining. EDM removes parts of the millimeter diamond surface by sputtering them off to fashion the tool. They use this noncontact method because the tools are tiny and fragile. The Carborundum base becomes the shaft of the drill or mill end.

The researchers describe how the tools are created and used in an online edition of the Journal of Micromechanics and Microengineering, which will be available in hard copy on Dec. 10. The engineers take advantage of the uneven surface created by diamond removal at the microscopic level and use the rough surface for cutting.

The tools spin exceptionally fast to remove material to create dimples or channels. The fast spinning, however, does not mean that the carving takes place rapidly. The tools are so small and so fragile that only very slight pressure, about as much as a paperclip exerts, sculpts the surface. It can take as long as an hour to produce one dimple a half millimeter in diameter.

Slow as that may be, the process would be faster than the current process which employs photolithography. Tiny tools can be designed and manufactured in less than a day and used to create the desired surface immediately. Photolithography requires many more steps and much longer lead-time.

While photolithography is typically only used on silicon chips or wafers, the tiny tools will work on glass, emeralds, sapphires, ceramics of all kinds and calcium fluorite. There are applications in optics, DNA analysis and biocomputers on a chip.

Tiny tools can also create shapes that photolithography cannot. In photolithography, surface shapes have to be built up by layer after layer of material creating a stair-step surface. Tiny tools grind and shape smooth surfaces although they cannot yet achieve the nano-size structures available with photolithography. "This really is a way to get shapes that we cannot get any other way," says Marsh.

Currently, the researchers are using existing machines designed for larger equipment to operate the tools, but they hope to develop a tabletop appliance. Equipment donations from Professional Instruments and Lion Precision in Minnesota and Panasonic supported this work. The National Science Foundation funded this research.

Andrea Elyse Messer | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>