Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On Mars, More Water From Pricey Plumbing

25.08.2004


NASA decides to send astronauts to Mars and farther out, one of the biggest technological hurdles it will face will be making sure they don’t get thirsty.

A $49,000 toilet at Purdue University may provide part of the answer. When NASA engineers first considered manned missions to Mars to follow the moon landings, they imagined that the astronauts would simply pack lots of water and food.

"We could go to Mars with Apollo technologies," said Dr. Daniel J. Barta, deputy manager of the advanced life support office at NASA’s Johnson Space Center in Houston. But the high cost of sending something from Earth to Mars led to estimates of $1 trillion for a Mars mission.



Since then, engineers have looked to slash weight and costs through draconian recycling of air, food and particularly water, with the spacecraft perhaps carrying as little as 1,000 gallons of water per astronaut for a trip that would take six months one way. (By contrast, the typical American uses about 100 gallons of water a day.) "They’ve got to make that last," said Dr. Jeffrey J. Volenec, a professor of agronomy at Purdue, "so recycling is going to be important." That includes making sure that what goes down the toilet comes back up as water and food.

As part of a five-year, $10 million, NASA-financed program for developing technologies to survive lengthy space travel, researchers at Purdue have built a Rube Goldberg system using plants and bacteria to transform feces and urine into plant fertilizer and clean water.

The contraption begins with a converted portable restroom on the third floor of Purdue’s civil engineering building, in a laboratory of Dr. James E. Alleman. Inside the stall, on loan from NASA, is the toilet, similar to ones on airliners that use a vacuum instead of water to empty the bowl. For the advancement of science, people donate their bodily wastes. "We have a bunch of volunteers," Dr. Alleman said. "They’re anonymous."

The volunteers deposit their urine down one pipe, where it is collected and partially frozen. The frozen portion is almost pure water ice; the impurities are left in the remaining unfrozen liquid.

The system currently recovers 30 percent of the water in urine, and Dr. Alleman believes that the yield can be raised to nearly 90 percent. "We recover almost pure water out of the urine," Dr. Alleman said. "It’s drinkable."

Meanwhile, the feces go down the toilet into a storage tank on the second floor. The researchers add plant and food waste that the astronauts would likely also need to dispose of. From there, the waste flows to a cylindrical container familiar to college students. "It is a small beer keg," Dr. Alleman said. "We have a limited budget." This particular keg, heated to 140 degrees, kills harmful microbes. "It’s much like pasteurizing milk," he said. Other bacteria in the keg thrive in heat and eat the waste.

After 10 days of the bacteria munching on the mix, the result is 97 percent water and 3 percent residual solids. "You can’t shower with that or eat it," Dr. Volenec said. While not putrid, he said, "It smells odd." He added, "Somewhere between a gym locker and sewage." One way to purify the water would be to boil it and then condense the steam, but that would consume large amounts of energy. The Purdue scientists look to plants to do the job instead.

Dr. Volenec takes the liquid from Dr. Alleman’s keg and spreads it onto plants. The residual solids fertilize the plants, and the plants pull water from the soil into their roots up through their stems into their leaves, where the moisture evaporates in the air. Cold pipes above condense the vapor, producing clean recycled water.

So far, the project has been a "moderate success," Dr. Volenec said. Tomatoes and peppers did not grow well in the sewage mixture, but rice and some marsh grasses have.

The processed sewage mixture could also be used for raising fish or for growing mushrooms. Dr. Barta, of NASA, said that the first astronauts would probably subsist mostly on packaged food, but that "having some fresh components would have a lot of appeal."

Using plants to cleanse the water and air on a spacecraft would add a new level of complexity, however. If the plants died, the astronauts would die, too. "We have to get the systems to function reliably for a long period of time," Dr. Barta said. "We can’t come back to Earth and fix them." Kenneth Chang

Susan A. Steeves | NY Times
Further information:
http://www.agcom.purdue.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>