Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors Take Space-age Materials to New Heights in Bridge Research

23.08.2004


With hundreds of thousands of the nation’s bridges nearing the end of their design lives, cash-strapped states are searching for innovative solutions to repair and replace their decaying structures. One answer may lie in the same material that delivered the stealth aircraft, according to two researchers at the University of Missouri-Rolla.

Composite fiber-reinforced polymer (FRP), first developed for use in the aerospace and automotive industries, may be able to help nurse the rapidly aging national highway infrastructure beyond its intended lifespan. Dr. Antonio Nanni, the Vernon and Maralee Jones Distinguished Professor of Civil Engineering at UMR, and Dr. John Myers, assistant professor of civil engineering at UMR, are researching how the composite materials can be used to rehabilitate existing structures as well as to construct new bridges.

The researchers are treating five decaying bridges in rural Missouri with a corrosion-resistant bandage of sorts made of this material. Like a bandage, the composite material is lightweight and flexible. Strips of the material can be wrapped around pillars or wallpapered on lengths of concrete to strengthen the original structure. These composite materials combine the strength of aramid, carbon and glass fibers with the stability of the polymer resins.



“In the repair and rehabilitation of building and civil infrastructure, these FRP materials may be very competitive on a first-cost basis,” Nanni says. “Composites are also more durable than steel, as well as lightweight.”

Not only can the high-performance material be wrapped around beams or other structures to provide additional support, but it also can be fashioned into reinforcement bars and inserted into concrete structures or soil before being covered with a sheet of polymer to strengthen the bridge bed. “This technology is ideal for strengthening and repair, and almost unmatchable for seismic upgrade,” Nanni says. “Yet the greatest opportunity is in the replacement of conventional materials for new construction.”

In 2000, the first fully composite bridge in Missouri was installed on the UMR campus. “At UMR, we demonstrated that a bridge can be built with off-the-shelf FRP tubes readily available from the pultrusion (or composite material) industry,” Nanni adds. “We also demonstrated that FRP is an ideal material system to integrate health monitoring features.”

The need for a cost-effective solution to deficient bridges hits close to home for the researchers, as 28 percent of Missouri’s bridges were found to be in poor condition according to a 2003 study by the Federal Highway Administration. De-icing salts and other materials cause significant corrosion decay on steel-reinforced concrete bridges, quickly aging the structures. Bridges that are structurally deficient are often posted for lower weight or are closed if they are found to be unsafe.

The researchers are employing four different FRP technologies as well as steel-reinforced polymer in the bridges, and will test the structures over a number of years to determine whether the composite materials can provide a long-term solution. “We are interested in monitoring durability as it pertains to both the FRP and the concrete substrate,” Nanni says. “In one bridge, we have not repaired the concrete and wish to determine how rapidly the deterioration process would continue on the existing materials, the concrete and its steel reinforcement.”

Nanni leads the Center for Infrastructure Engineering Studies (CIES) at UMR. Myers is one of the center’s research investigators. Other UMR researchers working with Nanni and Myers on the bridge research include Grzegorz Galecki, associate research professor of rock mechanics and explosives; Norbert Maerz, assistant professor of geological and petroleum engineering; Steve Watkins, associate professor of electrical and computer engineering; and Reza Zoughi, the Schlumberger Professor of Electrical and Computer Engineering.

| newswise
Further information:
http://www.umr.edu

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>