Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors Take Space-age Materials to New Heights in Bridge Research

23.08.2004


With hundreds of thousands of the nation’s bridges nearing the end of their design lives, cash-strapped states are searching for innovative solutions to repair and replace their decaying structures. One answer may lie in the same material that delivered the stealth aircraft, according to two researchers at the University of Missouri-Rolla.

Composite fiber-reinforced polymer (FRP), first developed for use in the aerospace and automotive industries, may be able to help nurse the rapidly aging national highway infrastructure beyond its intended lifespan. Dr. Antonio Nanni, the Vernon and Maralee Jones Distinguished Professor of Civil Engineering at UMR, and Dr. John Myers, assistant professor of civil engineering at UMR, are researching how the composite materials can be used to rehabilitate existing structures as well as to construct new bridges.

The researchers are treating five decaying bridges in rural Missouri with a corrosion-resistant bandage of sorts made of this material. Like a bandage, the composite material is lightweight and flexible. Strips of the material can be wrapped around pillars or wallpapered on lengths of concrete to strengthen the original structure. These composite materials combine the strength of aramid, carbon and glass fibers with the stability of the polymer resins.



“In the repair and rehabilitation of building and civil infrastructure, these FRP materials may be very competitive on a first-cost basis,” Nanni says. “Composites are also more durable than steel, as well as lightweight.”

Not only can the high-performance material be wrapped around beams or other structures to provide additional support, but it also can be fashioned into reinforcement bars and inserted into concrete structures or soil before being covered with a sheet of polymer to strengthen the bridge bed. “This technology is ideal for strengthening and repair, and almost unmatchable for seismic upgrade,” Nanni says. “Yet the greatest opportunity is in the replacement of conventional materials for new construction.”

In 2000, the first fully composite bridge in Missouri was installed on the UMR campus. “At UMR, we demonstrated that a bridge can be built with off-the-shelf FRP tubes readily available from the pultrusion (or composite material) industry,” Nanni adds. “We also demonstrated that FRP is an ideal material system to integrate health monitoring features.”

The need for a cost-effective solution to deficient bridges hits close to home for the researchers, as 28 percent of Missouri’s bridges were found to be in poor condition according to a 2003 study by the Federal Highway Administration. De-icing salts and other materials cause significant corrosion decay on steel-reinforced concrete bridges, quickly aging the structures. Bridges that are structurally deficient are often posted for lower weight or are closed if they are found to be unsafe.

The researchers are employing four different FRP technologies as well as steel-reinforced polymer in the bridges, and will test the structures over a number of years to determine whether the composite materials can provide a long-term solution. “We are interested in monitoring durability as it pertains to both the FRP and the concrete substrate,” Nanni says. “In one bridge, we have not repaired the concrete and wish to determine how rapidly the deterioration process would continue on the existing materials, the concrete and its steel reinforcement.”

Nanni leads the Center for Infrastructure Engineering Studies (CIES) at UMR. Myers is one of the center’s research investigators. Other UMR researchers working with Nanni and Myers on the bridge research include Grzegorz Galecki, associate research professor of rock mechanics and explosives; Norbert Maerz, assistant professor of geological and petroleum engineering; Steve Watkins, associate professor of electrical and computer engineering; and Reza Zoughi, the Schlumberger Professor of Electrical and Computer Engineering.

| newswise
Further information:
http://www.umr.edu

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>