Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors Take Space-age Materials to New Heights in Bridge Research

23.08.2004


With hundreds of thousands of the nation’s bridges nearing the end of their design lives, cash-strapped states are searching for innovative solutions to repair and replace their decaying structures. One answer may lie in the same material that delivered the stealth aircraft, according to two researchers at the University of Missouri-Rolla.

Composite fiber-reinforced polymer (FRP), first developed for use in the aerospace and automotive industries, may be able to help nurse the rapidly aging national highway infrastructure beyond its intended lifespan. Dr. Antonio Nanni, the Vernon and Maralee Jones Distinguished Professor of Civil Engineering at UMR, and Dr. John Myers, assistant professor of civil engineering at UMR, are researching how the composite materials can be used to rehabilitate existing structures as well as to construct new bridges.

The researchers are treating five decaying bridges in rural Missouri with a corrosion-resistant bandage of sorts made of this material. Like a bandage, the composite material is lightweight and flexible. Strips of the material can be wrapped around pillars or wallpapered on lengths of concrete to strengthen the original structure. These composite materials combine the strength of aramid, carbon and glass fibers with the stability of the polymer resins.



“In the repair and rehabilitation of building and civil infrastructure, these FRP materials may be very competitive on a first-cost basis,” Nanni says. “Composites are also more durable than steel, as well as lightweight.”

Not only can the high-performance material be wrapped around beams or other structures to provide additional support, but it also can be fashioned into reinforcement bars and inserted into concrete structures or soil before being covered with a sheet of polymer to strengthen the bridge bed. “This technology is ideal for strengthening and repair, and almost unmatchable for seismic upgrade,” Nanni says. “Yet the greatest opportunity is in the replacement of conventional materials for new construction.”

In 2000, the first fully composite bridge in Missouri was installed on the UMR campus. “At UMR, we demonstrated that a bridge can be built with off-the-shelf FRP tubes readily available from the pultrusion (or composite material) industry,” Nanni adds. “We also demonstrated that FRP is an ideal material system to integrate health monitoring features.”

The need for a cost-effective solution to deficient bridges hits close to home for the researchers, as 28 percent of Missouri’s bridges were found to be in poor condition according to a 2003 study by the Federal Highway Administration. De-icing salts and other materials cause significant corrosion decay on steel-reinforced concrete bridges, quickly aging the structures. Bridges that are structurally deficient are often posted for lower weight or are closed if they are found to be unsafe.

The researchers are employing four different FRP technologies as well as steel-reinforced polymer in the bridges, and will test the structures over a number of years to determine whether the composite materials can provide a long-term solution. “We are interested in monitoring durability as it pertains to both the FRP and the concrete substrate,” Nanni says. “In one bridge, we have not repaired the concrete and wish to determine how rapidly the deterioration process would continue on the existing materials, the concrete and its steel reinforcement.”

Nanni leads the Center for Infrastructure Engineering Studies (CIES) at UMR. Myers is one of the center’s research investigators. Other UMR researchers working with Nanni and Myers on the bridge research include Grzegorz Galecki, associate research professor of rock mechanics and explosives; Norbert Maerz, assistant professor of geological and petroleum engineering; Steve Watkins, associate professor of electrical and computer engineering; and Reza Zoughi, the Schlumberger Professor of Electrical and Computer Engineering.

| newswise
Further information:
http://www.umr.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>