Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors Take Space-age Materials to New Heights in Bridge Research

23.08.2004


With hundreds of thousands of the nation’s bridges nearing the end of their design lives, cash-strapped states are searching for innovative solutions to repair and replace their decaying structures. One answer may lie in the same material that delivered the stealth aircraft, according to two researchers at the University of Missouri-Rolla.

Composite fiber-reinforced polymer (FRP), first developed for use in the aerospace and automotive industries, may be able to help nurse the rapidly aging national highway infrastructure beyond its intended lifespan. Dr. Antonio Nanni, the Vernon and Maralee Jones Distinguished Professor of Civil Engineering at UMR, and Dr. John Myers, assistant professor of civil engineering at UMR, are researching how the composite materials can be used to rehabilitate existing structures as well as to construct new bridges.

The researchers are treating five decaying bridges in rural Missouri with a corrosion-resistant bandage of sorts made of this material. Like a bandage, the composite material is lightweight and flexible. Strips of the material can be wrapped around pillars or wallpapered on lengths of concrete to strengthen the original structure. These composite materials combine the strength of aramid, carbon and glass fibers with the stability of the polymer resins.



“In the repair and rehabilitation of building and civil infrastructure, these FRP materials may be very competitive on a first-cost basis,” Nanni says. “Composites are also more durable than steel, as well as lightweight.”

Not only can the high-performance material be wrapped around beams or other structures to provide additional support, but it also can be fashioned into reinforcement bars and inserted into concrete structures or soil before being covered with a sheet of polymer to strengthen the bridge bed. “This technology is ideal for strengthening and repair, and almost unmatchable for seismic upgrade,” Nanni says. “Yet the greatest opportunity is in the replacement of conventional materials for new construction.”

In 2000, the first fully composite bridge in Missouri was installed on the UMR campus. “At UMR, we demonstrated that a bridge can be built with off-the-shelf FRP tubes readily available from the pultrusion (or composite material) industry,” Nanni adds. “We also demonstrated that FRP is an ideal material system to integrate health monitoring features.”

The need for a cost-effective solution to deficient bridges hits close to home for the researchers, as 28 percent of Missouri’s bridges were found to be in poor condition according to a 2003 study by the Federal Highway Administration. De-icing salts and other materials cause significant corrosion decay on steel-reinforced concrete bridges, quickly aging the structures. Bridges that are structurally deficient are often posted for lower weight or are closed if they are found to be unsafe.

The researchers are employing four different FRP technologies as well as steel-reinforced polymer in the bridges, and will test the structures over a number of years to determine whether the composite materials can provide a long-term solution. “We are interested in monitoring durability as it pertains to both the FRP and the concrete substrate,” Nanni says. “In one bridge, we have not repaired the concrete and wish to determine how rapidly the deterioration process would continue on the existing materials, the concrete and its steel reinforcement.”

Nanni leads the Center for Infrastructure Engineering Studies (CIES) at UMR. Myers is one of the center’s research investigators. Other UMR researchers working with Nanni and Myers on the bridge research include Grzegorz Galecki, associate research professor of rock mechanics and explosives; Norbert Maerz, assistant professor of geological and petroleum engineering; Steve Watkins, associate professor of electrical and computer engineering; and Reza Zoughi, the Schlumberger Professor of Electrical and Computer Engineering.

| newswise
Further information:
http://www.umr.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>