Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Professors Take Space-age Materials to New Heights in Bridge Research


With hundreds of thousands of the nation’s bridges nearing the end of their design lives, cash-strapped states are searching for innovative solutions to repair and replace their decaying structures. One answer may lie in the same material that delivered the stealth aircraft, according to two researchers at the University of Missouri-Rolla.

Composite fiber-reinforced polymer (FRP), first developed for use in the aerospace and automotive industries, may be able to help nurse the rapidly aging national highway infrastructure beyond its intended lifespan. Dr. Antonio Nanni, the Vernon and Maralee Jones Distinguished Professor of Civil Engineering at UMR, and Dr. John Myers, assistant professor of civil engineering at UMR, are researching how the composite materials can be used to rehabilitate existing structures as well as to construct new bridges.

The researchers are treating five decaying bridges in rural Missouri with a corrosion-resistant bandage of sorts made of this material. Like a bandage, the composite material is lightweight and flexible. Strips of the material can be wrapped around pillars or wallpapered on lengths of concrete to strengthen the original structure. These composite materials combine the strength of aramid, carbon and glass fibers with the stability of the polymer resins.

“In the repair and rehabilitation of building and civil infrastructure, these FRP materials may be very competitive on a first-cost basis,” Nanni says. “Composites are also more durable than steel, as well as lightweight.”

Not only can the high-performance material be wrapped around beams or other structures to provide additional support, but it also can be fashioned into reinforcement bars and inserted into concrete structures or soil before being covered with a sheet of polymer to strengthen the bridge bed. “This technology is ideal for strengthening and repair, and almost unmatchable for seismic upgrade,” Nanni says. “Yet the greatest opportunity is in the replacement of conventional materials for new construction.”

In 2000, the first fully composite bridge in Missouri was installed on the UMR campus. “At UMR, we demonstrated that a bridge can be built with off-the-shelf FRP tubes readily available from the pultrusion (or composite material) industry,” Nanni adds. “We also demonstrated that FRP is an ideal material system to integrate health monitoring features.”

The need for a cost-effective solution to deficient bridges hits close to home for the researchers, as 28 percent of Missouri’s bridges were found to be in poor condition according to a 2003 study by the Federal Highway Administration. De-icing salts and other materials cause significant corrosion decay on steel-reinforced concrete bridges, quickly aging the structures. Bridges that are structurally deficient are often posted for lower weight or are closed if they are found to be unsafe.

The researchers are employing four different FRP technologies as well as steel-reinforced polymer in the bridges, and will test the structures over a number of years to determine whether the composite materials can provide a long-term solution. “We are interested in monitoring durability as it pertains to both the FRP and the concrete substrate,” Nanni says. “In one bridge, we have not repaired the concrete and wish to determine how rapidly the deterioration process would continue on the existing materials, the concrete and its steel reinforcement.”

Nanni leads the Center for Infrastructure Engineering Studies (CIES) at UMR. Myers is one of the center’s research investigators. Other UMR researchers working with Nanni and Myers on the bridge research include Grzegorz Galecki, associate research professor of rock mechanics and explosives; Norbert Maerz, assistant professor of geological and petroleum engineering; Steve Watkins, associate professor of electrical and computer engineering; and Reza Zoughi, the Schlumberger Professor of Electrical and Computer Engineering.

| newswise
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>