Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-Cost Fibers Remove Trace Atrazine From Drinking Water

23.08.2004


A new generation of high surface-area porous materials for removing atrazine from water supplies has been developed by researchers at the University of Illinois at Urbana-Champaign. The low-cost and wear-resistant fibers also can remove the hazardous contaminants chloroform and trichloroethylene, both byproducts of the commonly used chlorine disinfection process.

"We’ve shown that we can remove all these impurities to well below the maximum contaminant levels established by the Environmental Protection Agency," said James Economy, a professor of materials science and engineering at Illinois. "Having increased pore size and higher surface area, these fibers work much better than commercially available granulated activated carbon."

Atrazine is one of the most widely used herbicides in the United States. More than 75 million pounds of atrazine are applied annually. Spread on farm fields and residential lawns to control weeds, atrazine can work its way into local waterways and municipal drinking supplies. Millions of Americans unknowingly ingest atrazine with their tap water.



"Because atrazine is toxic to humans, the Environmental Protection Agency has established a maximum concentration level of three parts per billion," Economy said. "By tailoring the pore size and pore surface chemistry of our fibers, we can achieve this limit."

To make their fibers, Economy and Illinois research scientist Zhongren Yue begin by coating fiberglass assemblies with a polymeric solution and a chemical activation agent. Then, under mild heat, the polymer cross-links, creating pores about 10-30 angstroms in size. By controlling the chemistry, the scientists are able to tailor the fibers for specific target molecules, such as atrazine.

"Our chemically activated porous fibers are nearly eight times more effective at removing atrazine to below EPA standards than commercially available activated carbon," Economy said. "In fact, our fibers can remove atrazine to well below one part per billion. And our fibers can be easily regenerated under modest conditions."

Yue will discuss the fibers and present the latest test results at the 228th American Chemical Society national meeting in Philadelphia. The technology has been patented.

James E. Kloeppel | University of Illinois News Bure
Further information:
http://www.uiuc.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>