Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show how to assemble building blocks for nanotechnology

19.08.2004


University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in programmed ways. This method could be used to fabricate new materials and devices for nanotechnology.



Using computer simulation of model particles, Zhenli Zhang, U-M research fellow in chemical engineering, and Sharon Glotzer, U-M associate professor in chemical engineering, studied the self-assembly of particles with sticky molecular "patches" on their surfaces---discrete interaction sites that cause particles to stick together at just the right places to make the grouping organized. The paper, "Self Assembly of Patchy Particles," appeared in Nano Letters this month.

The results of the simulations showed that if surfaces of particles could be patterned with patches of molecules, they could make the particles assemble into different shapes. The trick, according to the researchers, is using patches that are strongly directional and attract and repel specific parts of other particles, much like proteins do.


This finding is important because the biggest impediment to developing nanotechnology is figuring out how to build the tiny structures, which are only as big as the smallest viruses. Because they are so small, nanodevices will not be built by the traditional means of using workers in factories or assembly lines. Rather, scientists must develop ways to make the devices assemble by themselves in precise ways for specific applications.

This type of self-assembly happens constantly in nature, but engineering it in the lab, so that eventually scientists can predict their shapes and use the shapes for specific applications, is another matter.

According to the paper, many of the structures they were able to predict with the model will prove useful in device fabrication. For example, sheets of spheres with tunable structures (an ordered arrangement of points that can be changed) may serve as novel materials with optical and mechanical properties.

The chains, rings and twisted and staircase assemblies could serve as basic structural units to further prepare materials with more complex structures such as tubes, helices and 3-D networks that could in turn, serve as scaffolds or templates for assembly of electronic or optical components, or as channels for transport of liquids or molecules.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>