Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zap, bam: Light-activated glue holds and releases workpieces in a flash

17.08.2004


Penn State engineer has developed a new technology that uses light-activated glue to hold workpieces in position for machining, grinding and other manufacturing processes.



Dr. Edward De Meter, professor of industrial and manufacturing engineering, who developed the concept, says, "This new technology offers an alternative to mechanical clamping, the approach industries most often use. Capital investment for automated clamping is typically high and mechanical clamps can deform the workpiece, impede the manufacturing process and occupy processing space that could otherwise be used to hold additional workpieces. Adhering workpieces to a fixture avoids these problems and can lead to significant improvements in manufacturing productivity, part quality and part cost."

In the new approach, the workpiece is anchored to a steel fixture that conforms to the underside of the workpiece. At strategic locations on its surface, the fixture has holes capped with small, round, raised pads made of commercial sapphire, a relatively inexpensive ceramic material. These pads, which De Meter calls gripper pins, act as lenses or windows for ultra violet or infrared light used to set or destroy glue anchoring the workpiece.


To load a workpiece, dabs of adhesive are placed on the gripper pins and the workpiece is put on top. A quick zap of low intensity ultraviolet light from a UV spot lamp delivered through the gripper pins causes the adhesive to set and form strong, tough, stiff bonds with the workpiece in seconds. The yield strength of the cured adhesive bond is greater than 5500 pounds per square inch.

When machining or other processing is completed, infrared light delivered by a laser through the gripper pins destroys the adhesive bonds and releases the workpiece. The laser blast destroys the adhesive bonds in a fraction of a second without heat transfer to the fixture or the workpiece.

De Meter says, "The adhesive that we use with our prototype is a commercially available product used for a variety of assembly operations in the electro-optics industry.

"We add pigment to the adhesive so that it absorbs infrared light when hit with the laser," he explains. "The pigment enbrittles the adhesive and causes its yield strength to drop below 300 pounds per square inch. Usually the workpiece can be released from the fixture by hand or with a gentle tap from a rubber mallet."

De Meter notes that vacuum chucks and magnetic clamps are currently available as alternatives to mechanical clamping. However, vacuum chucks can only handle light loads and magnetic clamps can only function with workpieces made from iron-containing materials. Light Activated Adhesive Gripper (LAAG), as De Meter calls the new workholding technology, enables a much wider variety of workpieces to be held, especially those originated as castings and forgings.

The research on the new technology was supported, in part, by a Special Grant for Exploratory Research from the National Science Foundation.

The University has a patent pending on the new technology and it will be showcased by Penn State and Masterworkholding Inc., a company that has optioned the intellectual property, at the International Machine Tool Show (IMTS) in Chicago, Ill. from Sept. 8 to 15.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Process Engineering:

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>