Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zap, bam: Light-activated glue holds and releases workpieces in a flash

17.08.2004


Penn State engineer has developed a new technology that uses light-activated glue to hold workpieces in position for machining, grinding and other manufacturing processes.



Dr. Edward De Meter, professor of industrial and manufacturing engineering, who developed the concept, says, "This new technology offers an alternative to mechanical clamping, the approach industries most often use. Capital investment for automated clamping is typically high and mechanical clamps can deform the workpiece, impede the manufacturing process and occupy processing space that could otherwise be used to hold additional workpieces. Adhering workpieces to a fixture avoids these problems and can lead to significant improvements in manufacturing productivity, part quality and part cost."

In the new approach, the workpiece is anchored to a steel fixture that conforms to the underside of the workpiece. At strategic locations on its surface, the fixture has holes capped with small, round, raised pads made of commercial sapphire, a relatively inexpensive ceramic material. These pads, which De Meter calls gripper pins, act as lenses or windows for ultra violet or infrared light used to set or destroy glue anchoring the workpiece.


To load a workpiece, dabs of adhesive are placed on the gripper pins and the workpiece is put on top. A quick zap of low intensity ultraviolet light from a UV spot lamp delivered through the gripper pins causes the adhesive to set and form strong, tough, stiff bonds with the workpiece in seconds. The yield strength of the cured adhesive bond is greater than 5500 pounds per square inch.

When machining or other processing is completed, infrared light delivered by a laser through the gripper pins destroys the adhesive bonds and releases the workpiece. The laser blast destroys the adhesive bonds in a fraction of a second without heat transfer to the fixture or the workpiece.

De Meter says, "The adhesive that we use with our prototype is a commercially available product used for a variety of assembly operations in the electro-optics industry.

"We add pigment to the adhesive so that it absorbs infrared light when hit with the laser," he explains. "The pigment enbrittles the adhesive and causes its yield strength to drop below 300 pounds per square inch. Usually the workpiece can be released from the fixture by hand or with a gentle tap from a rubber mallet."

De Meter notes that vacuum chucks and magnetic clamps are currently available as alternatives to mechanical clamping. However, vacuum chucks can only handle light loads and magnetic clamps can only function with workpieces made from iron-containing materials. Light Activated Adhesive Gripper (LAAG), as De Meter calls the new workholding technology, enables a much wider variety of workpieces to be held, especially those originated as castings and forgings.

The research on the new technology was supported, in part, by a Special Grant for Exploratory Research from the National Science Foundation.

The University has a patent pending on the new technology and it will be showcased by Penn State and Masterworkholding Inc., a company that has optioned the intellectual property, at the International Machine Tool Show (IMTS) in Chicago, Ill. from Sept. 8 to 15.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>