Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zap, bam: Light-activated glue holds and releases workpieces in a flash

17.08.2004


Penn State engineer has developed a new technology that uses light-activated glue to hold workpieces in position for machining, grinding and other manufacturing processes.



Dr. Edward De Meter, professor of industrial and manufacturing engineering, who developed the concept, says, "This new technology offers an alternative to mechanical clamping, the approach industries most often use. Capital investment for automated clamping is typically high and mechanical clamps can deform the workpiece, impede the manufacturing process and occupy processing space that could otherwise be used to hold additional workpieces. Adhering workpieces to a fixture avoids these problems and can lead to significant improvements in manufacturing productivity, part quality and part cost."

In the new approach, the workpiece is anchored to a steel fixture that conforms to the underside of the workpiece. At strategic locations on its surface, the fixture has holes capped with small, round, raised pads made of commercial sapphire, a relatively inexpensive ceramic material. These pads, which De Meter calls gripper pins, act as lenses or windows for ultra violet or infrared light used to set or destroy glue anchoring the workpiece.


To load a workpiece, dabs of adhesive are placed on the gripper pins and the workpiece is put on top. A quick zap of low intensity ultraviolet light from a UV spot lamp delivered through the gripper pins causes the adhesive to set and form strong, tough, stiff bonds with the workpiece in seconds. The yield strength of the cured adhesive bond is greater than 5500 pounds per square inch.

When machining or other processing is completed, infrared light delivered by a laser through the gripper pins destroys the adhesive bonds and releases the workpiece. The laser blast destroys the adhesive bonds in a fraction of a second without heat transfer to the fixture or the workpiece.

De Meter says, "The adhesive that we use with our prototype is a commercially available product used for a variety of assembly operations in the electro-optics industry.

"We add pigment to the adhesive so that it absorbs infrared light when hit with the laser," he explains. "The pigment enbrittles the adhesive and causes its yield strength to drop below 300 pounds per square inch. Usually the workpiece can be released from the fixture by hand or with a gentle tap from a rubber mallet."

De Meter notes that vacuum chucks and magnetic clamps are currently available as alternatives to mechanical clamping. However, vacuum chucks can only handle light loads and magnetic clamps can only function with workpieces made from iron-containing materials. Light Activated Adhesive Gripper (LAAG), as De Meter calls the new workholding technology, enables a much wider variety of workpieces to be held, especially those originated as castings and forgings.

The research on the new technology was supported, in part, by a Special Grant for Exploratory Research from the National Science Foundation.

The University has a patent pending on the new technology and it will be showcased by Penn State and Masterworkholding Inc., a company that has optioned the intellectual property, at the International Machine Tool Show (IMTS) in Chicago, Ill. from Sept. 8 to 15.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>