Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Invent Novel Way to Synthesize Quantum Dots

05.08.2004


A University at Buffalo research team has invented a new way to synthesize quantum dots -- luminescent nanocrystals made from semiconductor material.



Sometimes called artificial atoms, quantum dots have the potential to be used to build exciting new devices for biological and environmental sensing, quantum computing, lasers and telecommunications, among other applications.

The new technique developed by a team led by T.J. Mountziaris, Ph.D., professor of chemical and biological engineering in the UB School of Engineering and Applied Sciences, enables precise control of particle size by using a microemulsion template formed by "self-assembly." The process involves the direct mixing of a nonpolar substance (heptane), a polar substance (formamide) and an amphiphilic substance or surfactant (a block copolymer) to form a uniform dispersion of heptane droplets in formamide, stabilized by the surfactant.


A patent is pending on the technique, which was described in a recent issue of the journal Langmuir. Mountziaris’ co-researchers are Paschalis Alexandridis, Ph.D., UB professor of chemical and biological engineering; Athos Petrou, Ph.D., professor of physics in the UB College of Arts and Sciences; Georgios Karanikolos, a graduate student in the UB Department of Chemical and Biological Engineering; and Grigorios Itskos, a graduate student in the UB Department of Physics.

Using the technique, the UB researchers demonstrated the controlled synthesis of zinc selenide (ZnSe) quantum dots that exhibit size-dependent luminescence. When excited by ultraviolet light, quantum dots emit a particular fluorescent color and brightness, depending on the dot’s size. The problem for scientists has been devising simple techniques to control the size of quantum dots, which would give them the ability to control a quantum dot’s color properties. Such control is a critical factor in the quantum dot’s functionality.

The ZnSe quantum dots have potential for use in clinical and therapeutic diagnostics and for DNA analysis. The dots may be used, for example, as biological tags, attaching themselves to diseased cells, tumors or particular genes, alerting scientists to their presence in the body or in biological samples.

"The luminescent properties of quantum dots make them ideal for such applications," Mountziaris explains.

The technique developed by Mountziaris and co-researchers gives them the ability to precisely control the size (and luminescence wavelength) of the ZnSe dots in one step. The researchers were able grow ZnSe dots inside "nanoreactors" formed by the heptane nanodroplets of the emulsion. By reacting hydrogen selenide gas with diethyl-zinc (DEZn) dissolved in the heptane, a single quantum dot is grown in each nanoreactor, allowing precise control of particle size by simply controlling the initial concentration of DEZn in the heptane. Small clusters of ZnSe nucleate in each heptane nanodroplet and fuse into one particle by a process called coalescence. The researchers run the process at room temperature, but still obtain crystalline particles.

"Since we run the process at room temperature, we were expecting amorphous particles or crystalline particles with many defects. To our surprise, we obtained almost perfect crystals," Mountziaris says. "We believe that the localized energy release during cluster-cluster coalescence is the key to forming single crystalline particles.

"The energy released anneals the particles and leads to perfect crystals," he adds.

ZnSe quantum dots created by this technique have maintained their luminescent properties for more than a year.

To make quantum dots useful for practical applications, functional molecules must be attached to their surface after they are synthesized, Mountziaris explains.

"Researchers are creating biological tags of certain colors based on quantum dots by decorating their surface with functional molecules that selectively attach to a specific biological molecule," he says. "This gives the molecules something like a tail light, and you could follow them in the body by exciting their luminescence with ultraviolet light."

Mountziaris’ group is collaborating with UB bioengineers to use quantum dots in DNA analysis.

"The challenge of quantum-dot technology has been how to make dots of a precise size, how to functionalize the surface and also scale up the process for commercial applications," Mountziaris says. "Our technique can be scaled up very easily because it is based on self-assembly and does not depend on mixing efficiency or process time to control the size of the dots. We have demonstrated ’dial-a-size’ capability."

"One nanoreactor makes one quantum dot," he adds. "My colleague, Paschalis Alexandridis, and our student, George Karanikolos, have developed a very stable microemulsion that has very slow droplet-droplet interactions. This prevents agglomeration of the nanocrystals after they are formed, which can adversely affect their properties. It is also responsible for the remarkable stability of the quantum dot loaded emulsion."

Mountziaris and co-researchers are at work synthesizing additional compounds, such as cadmium selenide and lead selenide to cover a wide spectrum of luminescence wavelengths. They also are developing functional water-soluble caps for the quantum dots that would enable their use as biological tags, without diminishing the dots’ luminescence.

Multicolor quantum dots could be used to create "optical bar codes" from a sequence of joined quantum dots possessing different luminescent properties, Mountziaris says. "This would be very useful in multiplexed experiments by assigning a different function to different groups of dots and tracking them as they attach to different biomolecules," he explains.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB’s more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate, and professional degree programs.

| newswise
Further information:
http://www.buffalo.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>