Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Invent Novel Way to Synthesize Quantum Dots

05.08.2004


A University at Buffalo research team has invented a new way to synthesize quantum dots -- luminescent nanocrystals made from semiconductor material.



Sometimes called artificial atoms, quantum dots have the potential to be used to build exciting new devices for biological and environmental sensing, quantum computing, lasers and telecommunications, among other applications.

The new technique developed by a team led by T.J. Mountziaris, Ph.D., professor of chemical and biological engineering in the UB School of Engineering and Applied Sciences, enables precise control of particle size by using a microemulsion template formed by "self-assembly." The process involves the direct mixing of a nonpolar substance (heptane), a polar substance (formamide) and an amphiphilic substance or surfactant (a block copolymer) to form a uniform dispersion of heptane droplets in formamide, stabilized by the surfactant.


A patent is pending on the technique, which was described in a recent issue of the journal Langmuir. Mountziaris’ co-researchers are Paschalis Alexandridis, Ph.D., UB professor of chemical and biological engineering; Athos Petrou, Ph.D., professor of physics in the UB College of Arts and Sciences; Georgios Karanikolos, a graduate student in the UB Department of Chemical and Biological Engineering; and Grigorios Itskos, a graduate student in the UB Department of Physics.

Using the technique, the UB researchers demonstrated the controlled synthesis of zinc selenide (ZnSe) quantum dots that exhibit size-dependent luminescence. When excited by ultraviolet light, quantum dots emit a particular fluorescent color and brightness, depending on the dot’s size. The problem for scientists has been devising simple techniques to control the size of quantum dots, which would give them the ability to control a quantum dot’s color properties. Such control is a critical factor in the quantum dot’s functionality.

The ZnSe quantum dots have potential for use in clinical and therapeutic diagnostics and for DNA analysis. The dots may be used, for example, as biological tags, attaching themselves to diseased cells, tumors or particular genes, alerting scientists to their presence in the body or in biological samples.

"The luminescent properties of quantum dots make them ideal for such applications," Mountziaris explains.

The technique developed by Mountziaris and co-researchers gives them the ability to precisely control the size (and luminescence wavelength) of the ZnSe dots in one step. The researchers were able grow ZnSe dots inside "nanoreactors" formed by the heptane nanodroplets of the emulsion. By reacting hydrogen selenide gas with diethyl-zinc (DEZn) dissolved in the heptane, a single quantum dot is grown in each nanoreactor, allowing precise control of particle size by simply controlling the initial concentration of DEZn in the heptane. Small clusters of ZnSe nucleate in each heptane nanodroplet and fuse into one particle by a process called coalescence. The researchers run the process at room temperature, but still obtain crystalline particles.

"Since we run the process at room temperature, we were expecting amorphous particles or crystalline particles with many defects. To our surprise, we obtained almost perfect crystals," Mountziaris says. "We believe that the localized energy release during cluster-cluster coalescence is the key to forming single crystalline particles.

"The energy released anneals the particles and leads to perfect crystals," he adds.

ZnSe quantum dots created by this technique have maintained their luminescent properties for more than a year.

To make quantum dots useful for practical applications, functional molecules must be attached to their surface after they are synthesized, Mountziaris explains.

"Researchers are creating biological tags of certain colors based on quantum dots by decorating their surface with functional molecules that selectively attach to a specific biological molecule," he says. "This gives the molecules something like a tail light, and you could follow them in the body by exciting their luminescence with ultraviolet light."

Mountziaris’ group is collaborating with UB bioengineers to use quantum dots in DNA analysis.

"The challenge of quantum-dot technology has been how to make dots of a precise size, how to functionalize the surface and also scale up the process for commercial applications," Mountziaris says. "Our technique can be scaled up very easily because it is based on self-assembly and does not depend on mixing efficiency or process time to control the size of the dots. We have demonstrated ’dial-a-size’ capability."

"One nanoreactor makes one quantum dot," he adds. "My colleague, Paschalis Alexandridis, and our student, George Karanikolos, have developed a very stable microemulsion that has very slow droplet-droplet interactions. This prevents agglomeration of the nanocrystals after they are formed, which can adversely affect their properties. It is also responsible for the remarkable stability of the quantum dot loaded emulsion."

Mountziaris and co-researchers are at work synthesizing additional compounds, such as cadmium selenide and lead selenide to cover a wide spectrum of luminescence wavelengths. They also are developing functional water-soluble caps for the quantum dots that would enable their use as biological tags, without diminishing the dots’ luminescence.

Multicolor quantum dots could be used to create "optical bar codes" from a sequence of joined quantum dots possessing different luminescent properties, Mountziaris says. "This would be very useful in multiplexed experiments by assigning a different function to different groups of dots and tracking them as they attach to different biomolecules," he explains.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB’s more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate, and professional degree programs.

| newswise
Further information:
http://www.buffalo.edu

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>