Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers go from heaven to Earth in ’lifeguard’ test

16.06.2004


What happened in Vegas didn’t stay in Vegas for device’s inventors



Back in 2002, Stanford University engineers Kevin Montgomery, PhD, and Carsten Mundt, PhD, found themselves bored at a conference in Las Vegas. So they did what you’d expect from any researchers stuck in Sin City with frequent thoughts about life in outer space: They headed to a casino, downed a few cocktails and drew up a plan for the ideal physiological monitor for astronauts.

But here’s what you wouldn’t expect: The pair’s scheme has come to life, a result of a Stanford-NASA collaboration to develop the physiological monitor and test it in a gamut of extreme environments. If the device passes NASA muster next year, it will become part of astronauts’ wardrobes and will connect them to doctors who can monitor their health in real-time - something outside the realm of possibility given current NASA technology. Meanwhile, the team is using the device, called LifeGuard, to gather physiological data of use to the space program and is exploring terrestrial uses as well.


Today Montgomery, a researcher in the School of Medicine’s surgery department, is director of engineering at the Stanford University-NASA National Center for Space Biological Technologies, and Mundt, also a researcher in surgery, is the center’s chief hardware engineer. The center picks up where Montgomery and Mundt’s previous collaborations with NASA left off.

At the time of the Las Vegas conference, Montgomery and Mundt had created a personal physiological monitor demo for John Hines, manager of the astrobionics program at NASA Ames in nearby Mountain View. "We used the demo to help engineers at NASA Johnson Space Center start figuring out what they’d need for the astronauts. They could play with it and zero in on the requirements," said Montgomery.

Though similar devices existed, none provided the wearability and functionality NASA required. After Montgomery and Mundt received the go-ahead from Hines, the team built the system, designing it to relay astronauts’ physiological data to doctors on Earth and to withstand the wear and tear of use aboard the International Space Station.

The outcome was a computer about the size of an old-fashioned Walkman that straps on just above the wearer’s waist and a base station that can run on a tablet, laptop, desktop or pocket PC. The wearable computer, called the CPOD, takes in 2-lead ECG and respiration information from stick-on sensors. In addition, it detects temperature, body orientation and acceleration, pulse rate and blood oxygen level and supports a plug-in blood pressure monitor.

Once the device gathers the information, it can either stream or download it wirelessly to the base station, which then transmits the data over the Internet to any designated computer.

In February 2003, Greg Kovacs, MD, PhD, associate professor of electrical engineering, joined the testing effort and offered to wear it hiking and climbing. The hikes revealed glitches, electrode problems and provided feedback on comfort and ease of use.

"We learned: Don’t use electrodes that have very sticky electrode gel. That stuff comes off when you sweat," said Mundt, who took part in the climbs.

The most dramatic test so far put the equipment through an environment as close to extraterrestrial as possible. On that trip, the expedition members wore LifeGuard on a journey to the top of Licancabur volcano, on the border of Bolivia and Chile. It’s an environment that combines low-oxygen, low atmospheric pressure and high ultraviolet radiation. Once at the peak, the team leader tested the equipment in a yet more rigorous environment by jumping into a lake. At about 19,200 feet, it’s one of the planet’s highest. Kovacs also carried out the key mission for the LifeGuard team: live transmission of his vitals from a high-altitude, remote location to computers stationed in the Bay Area.

In March, four team members tested LifeGuard aboard NASA’s KC-135, a jet airplane that provides a taste of zero gravity by flying a roller-coaster-course trajectory. At the top of the arcs, the aircraft and its contents are weightless. "The CPODs worked beautifully," said Judy Swain, MD, professor and chair of Stanford’s Department of Medicine, who was part of the LifeGuard testing team.

Not only did the devices perform perfectly, they proved their value for monitoring astronauts with a variety of illnesses including space sickness, a combination of symptoms that occur in the weightless conditions of space flight.

The team feels confident that the device is ready for NASA’s assessment, which will probably take place next year. That’s great news for NASA’s Hines, whose goal is to develop the capability to provide medical monitoring of astronauts in space. "One day, hopefully, we’ll fly this technology to the Moon and maybe Mars," Hines said.

But the testing isn’t over. "We want to start looking at how it could be improved for other applications - not just space," said Montgomery.

And now that LifeGuard has proved itself, the device is in demand. Among the requests are several from NASA, including one to monitor astronauts during simulated spacewalks in the Neutral Buoyancy Lab, a huge 40-foot-deep pool of water at Johnson Space Center that astronauts use to get the hang of zero-gravity conditions.


The Stanford-NASA team has its own ideas for uses. Swain and Kovacs, who serve as principal investigators for the center, are planning to apply for grants to support several clinical trials: one that would use the device to help quantify the success of cardiac interventions and another that would use it to aid diagnosis of sleep disorders.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford.

| EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>