Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers go from heaven to Earth in ’lifeguard’ test

16.06.2004


What happened in Vegas didn’t stay in Vegas for device’s inventors



Back in 2002, Stanford University engineers Kevin Montgomery, PhD, and Carsten Mundt, PhD, found themselves bored at a conference in Las Vegas. So they did what you’d expect from any researchers stuck in Sin City with frequent thoughts about life in outer space: They headed to a casino, downed a few cocktails and drew up a plan for the ideal physiological monitor for astronauts.

But here’s what you wouldn’t expect: The pair’s scheme has come to life, a result of a Stanford-NASA collaboration to develop the physiological monitor and test it in a gamut of extreme environments. If the device passes NASA muster next year, it will become part of astronauts’ wardrobes and will connect them to doctors who can monitor their health in real-time - something outside the realm of possibility given current NASA technology. Meanwhile, the team is using the device, called LifeGuard, to gather physiological data of use to the space program and is exploring terrestrial uses as well.


Today Montgomery, a researcher in the School of Medicine’s surgery department, is director of engineering at the Stanford University-NASA National Center for Space Biological Technologies, and Mundt, also a researcher in surgery, is the center’s chief hardware engineer. The center picks up where Montgomery and Mundt’s previous collaborations with NASA left off.

At the time of the Las Vegas conference, Montgomery and Mundt had created a personal physiological monitor demo for John Hines, manager of the astrobionics program at NASA Ames in nearby Mountain View. "We used the demo to help engineers at NASA Johnson Space Center start figuring out what they’d need for the astronauts. They could play with it and zero in on the requirements," said Montgomery.

Though similar devices existed, none provided the wearability and functionality NASA required. After Montgomery and Mundt received the go-ahead from Hines, the team built the system, designing it to relay astronauts’ physiological data to doctors on Earth and to withstand the wear and tear of use aboard the International Space Station.

The outcome was a computer about the size of an old-fashioned Walkman that straps on just above the wearer’s waist and a base station that can run on a tablet, laptop, desktop or pocket PC. The wearable computer, called the CPOD, takes in 2-lead ECG and respiration information from stick-on sensors. In addition, it detects temperature, body orientation and acceleration, pulse rate and blood oxygen level and supports a plug-in blood pressure monitor.

Once the device gathers the information, it can either stream or download it wirelessly to the base station, which then transmits the data over the Internet to any designated computer.

In February 2003, Greg Kovacs, MD, PhD, associate professor of electrical engineering, joined the testing effort and offered to wear it hiking and climbing. The hikes revealed glitches, electrode problems and provided feedback on comfort and ease of use.

"We learned: Don’t use electrodes that have very sticky electrode gel. That stuff comes off when you sweat," said Mundt, who took part in the climbs.

The most dramatic test so far put the equipment through an environment as close to extraterrestrial as possible. On that trip, the expedition members wore LifeGuard on a journey to the top of Licancabur volcano, on the border of Bolivia and Chile. It’s an environment that combines low-oxygen, low atmospheric pressure and high ultraviolet radiation. Once at the peak, the team leader tested the equipment in a yet more rigorous environment by jumping into a lake. At about 19,200 feet, it’s one of the planet’s highest. Kovacs also carried out the key mission for the LifeGuard team: live transmission of his vitals from a high-altitude, remote location to computers stationed in the Bay Area.

In March, four team members tested LifeGuard aboard NASA’s KC-135, a jet airplane that provides a taste of zero gravity by flying a roller-coaster-course trajectory. At the top of the arcs, the aircraft and its contents are weightless. "The CPODs worked beautifully," said Judy Swain, MD, professor and chair of Stanford’s Department of Medicine, who was part of the LifeGuard testing team.

Not only did the devices perform perfectly, they proved their value for monitoring astronauts with a variety of illnesses including space sickness, a combination of symptoms that occur in the weightless conditions of space flight.

The team feels confident that the device is ready for NASA’s assessment, which will probably take place next year. That’s great news for NASA’s Hines, whose goal is to develop the capability to provide medical monitoring of astronauts in space. "One day, hopefully, we’ll fly this technology to the Moon and maybe Mars," Hines said.

But the testing isn’t over. "We want to start looking at how it could be improved for other applications - not just space," said Montgomery.

And now that LifeGuard has proved itself, the device is in demand. Among the requests are several from NASA, including one to monitor astronauts during simulated spacewalks in the Neutral Buoyancy Lab, a huge 40-foot-deep pool of water at Johnson Space Center that astronauts use to get the hang of zero-gravity conditions.


The Stanford-NASA team has its own ideas for uses. Swain and Kovacs, who serve as principal investigators for the center, are planning to apply for grants to support several clinical trials: one that would use the device to help quantify the success of cardiac interventions and another that would use it to aid diagnosis of sleep disorders.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford.

| EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>