Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loughborough innovators capture football’s magic free kick formula

08.06.2004


With Euro 2004 fast approaching, all eyes will be fixed on David Beckham’s right foot, with the fervent hope that he will kick the perfect free kick. Now researchers at Loughborough University have invented the world’s first device to capture this magic formula – in an instant.



To kick the perfect free kick, the ball must travel with sufficient speed and elevation to clear any defensive wall, whilst spinning fast enough to swerve away from the goalkeeper and into the goal. Until now it has not been possible to simultaneously record all of this vital information. But thanks to unique patented technology developed at Loughborough, footballers will know within seconds the minute detail of the ball’s flight characteristics.

The University’s Sports Technology Research Group (STRG) has been concerned with measuring the flight characteristics of balls for a number of years. Professor Roy Jones, Head of Loughborough’s Sports Technology Research Group and Chris Sumpter, a former researcher now working as a consultant originated a method of measuring golf ball spin by using an arrangement of dots placed around the ball surface.


The QuinSpin system is an extension of the ‘dot’ concept and evolved out of PhD research into the kicking capabilities of elite players. Dr Paul Neilson of the STRG carried out research that involved gathering data on hundreds of premiership kicks to test footballs. Rather than painstakingly record the data of each kick, Dr Neilson, Professor Jones and Mr Sumpter developed a uniquely patterned football and image capture unit to do the job in seconds and capture 3D ball spin for the very first time.

The player’s kick is picked up by QuinSpin’s inbuilt microphone which triggers a camera and two flash units to obtain sequential images of the ball in flight. The images are instantly transmitted to a standard laptop where ball speed, elevation and 3D spin measurements are computed. This level of information is only possible due to the special pattern on the football, obtained using a genetic algorithm, and enabling the system to automatically recognise the ball’s precise orientation.

QuinSpin’s commercial development has been greeted favourably by the coaching community in both the UK and America, with many coaches seeing its potential to assess kicking ability and to develop young player skills. “The assessment of kicking ability is currently based solely on coach opinion, but with QuinSpin, players or coaches can receive instant feedback on their performance,” says Dr Neilson. He continues, “Players could also use QuinSpin to help develop their weaker foot and a further application could be for monitoring rehabilitation after injury.”

A Gatsby Innovation Fellowship of £45,000 helped refine the QuinSpin technology and the inventors have now formed a company, Sports Dynamics, to commercially exploit the QuinSpin system. Sports Dynamics is the first Loughborough University venture to receive an investment of £250,000 from Lachesis, the University Challenge Seed Fund that accelerates the most promising research from five of the East Midlands universities. The Lachesis fund is managed by Quester Capital Management.

QuinSpin will be launched at the world’s largest soccer coach’s convention in America in January 2005. As the Loughborough innovators hold the patent for this unique 3D spin measurement technology for any projectile, the promising commercial possibilities could extend beyond football into a host of other sports.

Anna Seddon | Loughborough University
Further information:
http://www.lboro.ac.uk/service/publicity/news-releases/2004/04_66_quinspin.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>