Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loughborough innovators capture football’s magic free kick formula

08.06.2004


With Euro 2004 fast approaching, all eyes will be fixed on David Beckham’s right foot, with the fervent hope that he will kick the perfect free kick. Now researchers at Loughborough University have invented the world’s first device to capture this magic formula – in an instant.



To kick the perfect free kick, the ball must travel with sufficient speed and elevation to clear any defensive wall, whilst spinning fast enough to swerve away from the goalkeeper and into the goal. Until now it has not been possible to simultaneously record all of this vital information. But thanks to unique patented technology developed at Loughborough, footballers will know within seconds the minute detail of the ball’s flight characteristics.

The University’s Sports Technology Research Group (STRG) has been concerned with measuring the flight characteristics of balls for a number of years. Professor Roy Jones, Head of Loughborough’s Sports Technology Research Group and Chris Sumpter, a former researcher now working as a consultant originated a method of measuring golf ball spin by using an arrangement of dots placed around the ball surface.


The QuinSpin system is an extension of the ‘dot’ concept and evolved out of PhD research into the kicking capabilities of elite players. Dr Paul Neilson of the STRG carried out research that involved gathering data on hundreds of premiership kicks to test footballs. Rather than painstakingly record the data of each kick, Dr Neilson, Professor Jones and Mr Sumpter developed a uniquely patterned football and image capture unit to do the job in seconds and capture 3D ball spin for the very first time.

The player’s kick is picked up by QuinSpin’s inbuilt microphone which triggers a camera and two flash units to obtain sequential images of the ball in flight. The images are instantly transmitted to a standard laptop where ball speed, elevation and 3D spin measurements are computed. This level of information is only possible due to the special pattern on the football, obtained using a genetic algorithm, and enabling the system to automatically recognise the ball’s precise orientation.

QuinSpin’s commercial development has been greeted favourably by the coaching community in both the UK and America, with many coaches seeing its potential to assess kicking ability and to develop young player skills. “The assessment of kicking ability is currently based solely on coach opinion, but with QuinSpin, players or coaches can receive instant feedback on their performance,” says Dr Neilson. He continues, “Players could also use QuinSpin to help develop their weaker foot and a further application could be for monitoring rehabilitation after injury.”

A Gatsby Innovation Fellowship of £45,000 helped refine the QuinSpin technology and the inventors have now formed a company, Sports Dynamics, to commercially exploit the QuinSpin system. Sports Dynamics is the first Loughborough University venture to receive an investment of £250,000 from Lachesis, the University Challenge Seed Fund that accelerates the most promising research from five of the East Midlands universities. The Lachesis fund is managed by Quester Capital Management.

QuinSpin will be launched at the world’s largest soccer coach’s convention in America in January 2005. As the Loughborough innovators hold the patent for this unique 3D spin measurement technology for any projectile, the promising commercial possibilities could extend beyond football into a host of other sports.

Anna Seddon | Loughborough University
Further information:
http://www.lboro.ac.uk/service/publicity/news-releases/2004/04_66_quinspin.html

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>