Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loughborough innovators capture football’s magic free kick formula

08.06.2004


With Euro 2004 fast approaching, all eyes will be fixed on David Beckham’s right foot, with the fervent hope that he will kick the perfect free kick. Now researchers at Loughborough University have invented the world’s first device to capture this magic formula – in an instant.



To kick the perfect free kick, the ball must travel with sufficient speed and elevation to clear any defensive wall, whilst spinning fast enough to swerve away from the goalkeeper and into the goal. Until now it has not been possible to simultaneously record all of this vital information. But thanks to unique patented technology developed at Loughborough, footballers will know within seconds the minute detail of the ball’s flight characteristics.

The University’s Sports Technology Research Group (STRG) has been concerned with measuring the flight characteristics of balls for a number of years. Professor Roy Jones, Head of Loughborough’s Sports Technology Research Group and Chris Sumpter, a former researcher now working as a consultant originated a method of measuring golf ball spin by using an arrangement of dots placed around the ball surface.


The QuinSpin system is an extension of the ‘dot’ concept and evolved out of PhD research into the kicking capabilities of elite players. Dr Paul Neilson of the STRG carried out research that involved gathering data on hundreds of premiership kicks to test footballs. Rather than painstakingly record the data of each kick, Dr Neilson, Professor Jones and Mr Sumpter developed a uniquely patterned football and image capture unit to do the job in seconds and capture 3D ball spin for the very first time.

The player’s kick is picked up by QuinSpin’s inbuilt microphone which triggers a camera and two flash units to obtain sequential images of the ball in flight. The images are instantly transmitted to a standard laptop where ball speed, elevation and 3D spin measurements are computed. This level of information is only possible due to the special pattern on the football, obtained using a genetic algorithm, and enabling the system to automatically recognise the ball’s precise orientation.

QuinSpin’s commercial development has been greeted favourably by the coaching community in both the UK and America, with many coaches seeing its potential to assess kicking ability and to develop young player skills. “The assessment of kicking ability is currently based solely on coach opinion, but with QuinSpin, players or coaches can receive instant feedback on their performance,” says Dr Neilson. He continues, “Players could also use QuinSpin to help develop their weaker foot and a further application could be for monitoring rehabilitation after injury.”

A Gatsby Innovation Fellowship of £45,000 helped refine the QuinSpin technology and the inventors have now formed a company, Sports Dynamics, to commercially exploit the QuinSpin system. Sports Dynamics is the first Loughborough University venture to receive an investment of £250,000 from Lachesis, the University Challenge Seed Fund that accelerates the most promising research from five of the East Midlands universities. The Lachesis fund is managed by Quester Capital Management.

QuinSpin will be launched at the world’s largest soccer coach’s convention in America in January 2005. As the Loughborough innovators hold the patent for this unique 3D spin measurement technology for any projectile, the promising commercial possibilities could extend beyond football into a host of other sports.

Anna Seddon | Loughborough University
Further information:
http://www.lboro.ac.uk/service/publicity/news-releases/2004/04_66_quinspin.html

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>