Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny tango: Device sorts microscopic particles with speed and precision

07.06.2004


In a remarkable collaboration between engineers, physicists and biologists, Princeton scientists have invented a device that rapidly sorts microscopic particles into extremely fine gradations of sizes, opening a range of potential uses.



The researchers have used the device to sort particles ranging in size from bacterial cells to large segments of DNA and reported their results in the May 14 issue of Science. The technology could greatly accelerate the work of sequencing genomes and could find uses in many other areas, from improving the performance of pharmaceuticals to detecting bioterrorism agents.

Until now there was no way to sort large quantities of molecules or cells by size with such speed and precision, according to the researchers. Current methods separate particles only according to major differences in size and, for particles such as DNA, can take hours to perform. The Princeton invention can distinguish large quantities of particles that are 1.00 micrometer (a millionth of a meter) from others that are 1.005 microns in a matter of seconds.


The device is dubbed a "tango array" for the precise choreography it imposes upon particles.

The discovery was led by Lotien R. Huang, a postdoctoral researcher in electrical engineering, and grew out of a long-term collaboration between James Sturm, professor of electrical engineering, Robert Austin, a professor of physics, and Edward Cox, a professor of molecular biology, all of whom are co-authors of the Science paper. The group, which is part of the newly formed Princeton Institute for the Science and Technology of Materials, has produced a variety of devices for sorting DNA and other particles, but none as fast and precise as the tango array.

The trade-off between speed and precision had seemed insurmountable, said Huang, who has been building and testing sorting devices for nearly six years. The breakthrough came when a collaborator in the physics department, former postdoctoral researcher Jonas Tegenfeldt, challenged Huang to come up with a mathematical description of how his earlier attempts at sorting devices worked: If he altered a device, could he predict exactly how its performance would change?

"At first I thought such an analytical model would be impossible because the structures were so complicated, but Jonas got me thinking," said Huang, who has been working on the problem for six years. Within a few days, Huang not only derived a mathematical theory, but had an insight into making an entirely new device that has virtually no trade-off between speed and accuracy.

Huang quickly made a prototype device and tested it with tiny plastic beads. "It gives such amazing separation resolution in just a minute," he said. "And the operation is very simple: You just need a syringe to push your sample through. We are very excited about it."

The device consists of an array of microscopic pillars etched into silicon. Air from a syringe or other pump forces a liquid suspension of particles through the pillar array, which guides the particles into different paths. When the particles emerge from the array, they have been sorted into any number of "channels" according to size. A device less than 1 square inch could easily yield hundreds of channels, each just 1 percent different in size.

The device works in a unique way because the arrangement of pillars forces particles along completely predetermined paths, like pennies and dimes rolling through a child’s coin sorter. Previous attempts required the particles to diffuse randomly so that bigger particles slowly drifted one way and smaller ones another. Researchers had believed that fixed paths were not possible in part because small particles jiggle constantly, making them move in uncontrollable ways. Huang discovered that, with the proper arrangement of pillars, the particles could be made to slide in a tango-like dance forward or sideways at each obstacle depending precisely on the particle’s size.

"To suddenly say that there is a deterministic (non-random) way to do this really flies in the face of conventional wisdom," said Austin. "It’s something I never would have thought of."

The device could greatly speed up and expand many areas of biological research and could largely replace some centrifuge devices that are commonly used to separate cells and molecules based on mass, according to Cox. A primary use could be in sorting segments of DNA according to their length, which is a key step in genome sequencing efforts. Another use may be in distinguishing one type of virus from another, because many viruses have a unique size, slightly different from other viruses, Cox said.

"Right now we use antibodies; we use microscopes; we sequence the genomes -- there are just a huge number of heavy-duty 20th century tricks," said Cox. "It may be that this device will let us say in an instant that we have one kind of virus and not another."

In pharmaceuticals, the size of the drug particles in a capsule can play a critical role in how quickly the drug is absorbed and excreted in the body, noted Sturm. "You can use advanced chemical engineering methods to create particles of a certain size, but once you have done that there is not a lot you can do to filter out exact sizes and check the quality," Sturm said.

Huang said the device could also result in improved ink jet printers, which produce better results if the ink particles are sized precisely.

The researchers are now working to make a tango array for even smaller particles, including clusters of just a few protein molecules. It should only be a question of making a smaller array of silicon pillars, which is hard but not impossible, said Huang. "So long as you can make this pattern, you get the same performance," he said.


The research was funded by the Defense Advanced Research Projects Agency, the National Science Foundation, the National Institutes of Health and the State of New Jersey.

Patty Allen | Princeton University
Further information:
http://www.princeton.edu/pr/news/04/q2/0604-particle.htm

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>