Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny tango: Device sorts microscopic particles with speed and precision

07.06.2004


In a remarkable collaboration between engineers, physicists and biologists, Princeton scientists have invented a device that rapidly sorts microscopic particles into extremely fine gradations of sizes, opening a range of potential uses.



The researchers have used the device to sort particles ranging in size from bacterial cells to large segments of DNA and reported their results in the May 14 issue of Science. The technology could greatly accelerate the work of sequencing genomes and could find uses in many other areas, from improving the performance of pharmaceuticals to detecting bioterrorism agents.

Until now there was no way to sort large quantities of molecules or cells by size with such speed and precision, according to the researchers. Current methods separate particles only according to major differences in size and, for particles such as DNA, can take hours to perform. The Princeton invention can distinguish large quantities of particles that are 1.00 micrometer (a millionth of a meter) from others that are 1.005 microns in a matter of seconds.


The device is dubbed a "tango array" for the precise choreography it imposes upon particles.

The discovery was led by Lotien R. Huang, a postdoctoral researcher in electrical engineering, and grew out of a long-term collaboration between James Sturm, professor of electrical engineering, Robert Austin, a professor of physics, and Edward Cox, a professor of molecular biology, all of whom are co-authors of the Science paper. The group, which is part of the newly formed Princeton Institute for the Science and Technology of Materials, has produced a variety of devices for sorting DNA and other particles, but none as fast and precise as the tango array.

The trade-off between speed and precision had seemed insurmountable, said Huang, who has been building and testing sorting devices for nearly six years. The breakthrough came when a collaborator in the physics department, former postdoctoral researcher Jonas Tegenfeldt, challenged Huang to come up with a mathematical description of how his earlier attempts at sorting devices worked: If he altered a device, could he predict exactly how its performance would change?

"At first I thought such an analytical model would be impossible because the structures were so complicated, but Jonas got me thinking," said Huang, who has been working on the problem for six years. Within a few days, Huang not only derived a mathematical theory, but had an insight into making an entirely new device that has virtually no trade-off between speed and accuracy.

Huang quickly made a prototype device and tested it with tiny plastic beads. "It gives such amazing separation resolution in just a minute," he said. "And the operation is very simple: You just need a syringe to push your sample through. We are very excited about it."

The device consists of an array of microscopic pillars etched into silicon. Air from a syringe or other pump forces a liquid suspension of particles through the pillar array, which guides the particles into different paths. When the particles emerge from the array, they have been sorted into any number of "channels" according to size. A device less than 1 square inch could easily yield hundreds of channels, each just 1 percent different in size.

The device works in a unique way because the arrangement of pillars forces particles along completely predetermined paths, like pennies and dimes rolling through a child’s coin sorter. Previous attempts required the particles to diffuse randomly so that bigger particles slowly drifted one way and smaller ones another. Researchers had believed that fixed paths were not possible in part because small particles jiggle constantly, making them move in uncontrollable ways. Huang discovered that, with the proper arrangement of pillars, the particles could be made to slide in a tango-like dance forward or sideways at each obstacle depending precisely on the particle’s size.

"To suddenly say that there is a deterministic (non-random) way to do this really flies in the face of conventional wisdom," said Austin. "It’s something I never would have thought of."

The device could greatly speed up and expand many areas of biological research and could largely replace some centrifuge devices that are commonly used to separate cells and molecules based on mass, according to Cox. A primary use could be in sorting segments of DNA according to their length, which is a key step in genome sequencing efforts. Another use may be in distinguishing one type of virus from another, because many viruses have a unique size, slightly different from other viruses, Cox said.

"Right now we use antibodies; we use microscopes; we sequence the genomes -- there are just a huge number of heavy-duty 20th century tricks," said Cox. "It may be that this device will let us say in an instant that we have one kind of virus and not another."

In pharmaceuticals, the size of the drug particles in a capsule can play a critical role in how quickly the drug is absorbed and excreted in the body, noted Sturm. "You can use advanced chemical engineering methods to create particles of a certain size, but once you have done that there is not a lot you can do to filter out exact sizes and check the quality," Sturm said.

Huang said the device could also result in improved ink jet printers, which produce better results if the ink particles are sized precisely.

The researchers are now working to make a tango array for even smaller particles, including clusters of just a few protein molecules. It should only be a question of making a smaller array of silicon pillars, which is hard but not impossible, said Huang. "So long as you can make this pattern, you get the same performance," he said.


The research was funded by the Defense Advanced Research Projects Agency, the National Science Foundation, the National Institutes of Health and the State of New Jersey.

Patty Allen | Princeton University
Further information:
http://www.princeton.edu/pr/news/04/q2/0604-particle.htm

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>