Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Labs-on-a-chip to Detect Milk Contamination

17.05.2004


The Department of Homeland Security is backing research on lab-on-a-chip sensors that might guard the nation’s food supply better than the current system of tamper-resistant lids and freshness dates.



Whitaker investigator David Beebe, Ph.D., of the University of Wisconsin-Madison has developed a process to make on-demand, miniature sensors for a wide variety of poisons, including naturally occurring contaminants and intentionally introduced toxins.

The sensors can be constructed to test for a particular toxin in as little as an hour with test results available in minutes.


The Wisconsin group, with Homeland Security funding, is focusing on the nation’s milk supply, which comes from a widely dispersed system in which large amounts of the highly perishable product are quickly collected and distributed.

With a short cow-to-consumer timeline, contamination could affect large numbers of people before being detected. It might be possible, however, to incorporate sensors in food packaging that could tell if the package is disturbed or the contents are contaminated.

Beebe’s group reported in a paper to be published in the journal Electrophoresis that disposable sensors can be manufactured on-demand in an inexpensive process. With collaborator Eric Johnson, Beebe tested the technique to rapidly detect the botulism toxin, botulinum neurotoxin, the most poisonous substance known.

"Although outbreaks due to contaminated food are rare, the infection can have a profound impact on areas in which the outbreaks occur," Beebe and his colleagues reported. "Due to its high specific toxicity, botulinum toxin is also considered a potential agent for use in bioterrorism."

The botulinum toxin can be detected in blood or food using a standard test that takes up to four days to produce results. But the only treatment is an antitoxin that must be given right away. A lab-on-a-chip could produce faster results for more rapid treatment.

Beebe’s design and fabrication process, which he calls microfluidic tectonics, uses light to freeze a liquid into the solid shape of a component, such as a valve, in the precise physical location where the component is needed.

Biological tests can require different steps performed in different sequences. Each test requires a particular arrangement of components, such as check-valves, channels, mixers, pumps, and filters. Beebe’s modular approach allows the flexibility to design and fabricate a wide range of test chips from a single toolbox of components.

"Multiple functions such as diluting and mixing blood, separating whole blood to serum and cells, and detecting botulinum toxin in the serum are performed in the device," the researchers reported.

The device needs no power supply and uses no electronic parts. A blood sample is placed in a chamber on the chip and then the test set into motion by squeezing the chamber. Positive results appear as a color change visible to the naked eye.

The current research was supported by the Defense Advanced Research Projects Agency. The Department of Homeland Security has made a $15 million grant to a national consortium of academic, private and government organizations investigating ways of detecting and preventing food contamination. Beebe’s work will be supported through the University of Wisconsin-Madison, a member of the consortium.

In 1996, Beebe received a Whitaker Foundation Biomedical Engineering Research Grant for a project in tactile sensors. In addition to biosensing, his current research focuses on the use of microfluidics to understand cell behavior.

Frank Blanchard | Whitaker Foundation
Further information:
http://www.whitaker.org/news/beebe.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>