Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Labs-on-a-chip to Detect Milk Contamination

17.05.2004


The Department of Homeland Security is backing research on lab-on-a-chip sensors that might guard the nation’s food supply better than the current system of tamper-resistant lids and freshness dates.



Whitaker investigator David Beebe, Ph.D., of the University of Wisconsin-Madison has developed a process to make on-demand, miniature sensors for a wide variety of poisons, including naturally occurring contaminants and intentionally introduced toxins.

The sensors can be constructed to test for a particular toxin in as little as an hour with test results available in minutes.


The Wisconsin group, with Homeland Security funding, is focusing on the nation’s milk supply, which comes from a widely dispersed system in which large amounts of the highly perishable product are quickly collected and distributed.

With a short cow-to-consumer timeline, contamination could affect large numbers of people before being detected. It might be possible, however, to incorporate sensors in food packaging that could tell if the package is disturbed or the contents are contaminated.

Beebe’s group reported in a paper to be published in the journal Electrophoresis that disposable sensors can be manufactured on-demand in an inexpensive process. With collaborator Eric Johnson, Beebe tested the technique to rapidly detect the botulism toxin, botulinum neurotoxin, the most poisonous substance known.

"Although outbreaks due to contaminated food are rare, the infection can have a profound impact on areas in which the outbreaks occur," Beebe and his colleagues reported. "Due to its high specific toxicity, botulinum toxin is also considered a potential agent for use in bioterrorism."

The botulinum toxin can be detected in blood or food using a standard test that takes up to four days to produce results. But the only treatment is an antitoxin that must be given right away. A lab-on-a-chip could produce faster results for more rapid treatment.

Beebe’s design and fabrication process, which he calls microfluidic tectonics, uses light to freeze a liquid into the solid shape of a component, such as a valve, in the precise physical location where the component is needed.

Biological tests can require different steps performed in different sequences. Each test requires a particular arrangement of components, such as check-valves, channels, mixers, pumps, and filters. Beebe’s modular approach allows the flexibility to design and fabricate a wide range of test chips from a single toolbox of components.

"Multiple functions such as diluting and mixing blood, separating whole blood to serum and cells, and detecting botulinum toxin in the serum are performed in the device," the researchers reported.

The device needs no power supply and uses no electronic parts. A blood sample is placed in a chamber on the chip and then the test set into motion by squeezing the chamber. Positive results appear as a color change visible to the naked eye.

The current research was supported by the Defense Advanced Research Projects Agency. The Department of Homeland Security has made a $15 million grant to a national consortium of academic, private and government organizations investigating ways of detecting and preventing food contamination. Beebe’s work will be supported through the University of Wisconsin-Madison, a member of the consortium.

In 1996, Beebe received a Whitaker Foundation Biomedical Engineering Research Grant for a project in tactile sensors. In addition to biosensing, his current research focuses on the use of microfluidics to understand cell behavior.

Frank Blanchard | Whitaker Foundation
Further information:
http://www.whitaker.org/news/beebe.html

More articles from Process Engineering:

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>