Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking humpback whale flippers may improve airplane wing design

12.05.2004


Wind tunnel tests of scale-model humpback whale flippers have revealed that the scalloped, bumpy flipper is a more efficient wing design than is currently used by the aeronautics industry on airplanes. The tests show that bump-ridged flippers do not stall as quickly and produce more lift and less drag than comparably sized sleek flippers.



The tests were reported by biomechanicist Frank Fish of West Chester University, Penn., fluid dynamics engineer Laurens Howle of the Pratt School of Engineering at Duke University and David Miklosovic and Mark Murray at the U.S. Naval Academy. They reported their findings in the May 2004 issue of Physics of Fluids , published in advance online on March 15, 2004.

In their study, the team first created two approximately 22-inch-tall scale models of humpback pectoral flippers -- one with the characteristic bumps, called tubercles, and one without. The models were machined from thick, clear polycarbonate at Duke University. Testing was conducted in a low speed closed-circuit wind tunnel at the U.S. Naval Academy in Annapolis, Md.


The sleek flipper performance was similar to a typical airplane wing. But the tubercle flipper exhibited nearly 8 percent better lift properties, and withstood stall at a 40 percent steeper wind angle. The team was particularly surprised to discover that the flipper with tubercles produced as much as 32 percent lower drag than the sleek flipper.

"The simultaneous achievement of increased lift and reduced drag results in an increase in aerodynamic efficiency," Howle explains.

This new understanding of humpback whale flipper aerodynamics has implications for airplane wing and underwater vehicle design. Increased lift (the upward force on an airplane wing) at higher wind angles affects how easily airplanes take off, and helps pilots slow down during landing.

Improved resistance to stall would add a new margin of safety to aircraft flight and also make planes more maneuverable. Drag -- the rearward force on an airplane wing -- affects how much fuel the airplane must consume during flight. Stall occurs when the air no longer flows smoothly over the top of the wing but separates from the top of the wing before reaching the trailing edge. When an airplane wing stalls, it dramatically loses lift while incurring an increase in drag.

As whales move through the water, the tubercles disrupt the line of pressure against the leading edge of the flippers. The row of tubercles sheers the flow of water and redirects it into the scalloped valley between each tubercle, causing swirling vortices that roll up and over the flipper to actually enhance lift properties.

"The swirling vortices inject momentum into the flow," said Howle. "This injection of momentum keeps the flow attached to the upper surface of the wing and delays stall to higher wind angles."

"This discovery has potential applications not only to airplane wings but also on the tips of helicopter rotors, airplane propellers and ship rudders," said Howle.

The purpose of the tubercles on the leading edge of humpback whale flippers has been the source of speculation for some time, said Fish. "The idea they improved flipper aerodynamics was so counter to our current doctrine of fluid dynamics, no one had ever analyzed them," he said.

Humpback whales maneuver in the water with surprising agility for 44-foot animals, particularly when they are hunting for food. By exhaling air underwater as they turn in a circle, the whales create a cylindrical wall of bubbles that herd small fish inside. Then they barrel up through the middle of the "bubble net," mouth open wide, to scoop up their prey.

According to Fish, the scalloped hammerhead shark is the only other marine animal with a similar aerodynamic design. The expanded hammerhead shark head may act like a wing.

The trick now is to figure out how to incorporate the advantage of the tubercle flipper into manmade designs, said Fish.

The research team now plans to perform a systematic engineering investigation of the role of scalloped leading edges on lift increase, drag reduction and stall delay.

Deborah Hill | EurekAlert!
Further information:
http://www.dukenews.duke.edu/news/design_0504.html

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>